The slope-intercept form:
y = mx + b
m - slope
b - y-intercept
We have m = 3 and b = -3. Substitute:
<h3>y = 3x - 3</h3>
Answer:
- Let p be the population at t be the number of years since 2011. Then,

- The projected population of the high school in 2015=1800
- In <u>2019</u> the population be 1600 students
Step-by-step explanation:
Given: The population at Bishop High School students in 2011 =2000
Also, Every year the population decreases by 50 students which implies the rate of decrease in population is constant.
So, the function is a linear function.
Let p be the population at t be the number of years since 2011.
Then, 
So at t=0, p=2000
In year 2015, t=4, substitute t=4 in the above equation ,we get

Hence, the projected population of the high school in 2015=1800
Now, put p=1600 in the function , we get

Now, 2011+8=2019
Hence, in <u>2019</u> the population be 1600 students
1.
(3/4)^2 = (3/4)* (3/4)
(3/4)*(3/4)= 9/16
Final answer: 9/16
2.
11+6.4= 17.4
Final answer: 17.4
3.
9.5-2.8= 6.7
Final answer: 6.7
Answer:
Step-by-step explanation:
- -13x < 65
- x > - 65/13
- x > -5
- x = (-5, + oo)
Answer:
Probability that a randomly selected firm will earn less than 100 million dollars is 0.8413.
Step-by-step explanation:
We are given that the mean income of firms in the industry for a year is 95 million dollars with a standard deviation of 5 million dollars. Also, incomes for the industry are distributed normally.
<em>Let X = incomes for the industry</em>
So, X ~ N(
)
Now, the z score probability distribution is given by;
Z =
~ N(0,1)
where,
= mean income of firms in the industry = 95 million dollars
= standard deviation = 5 million dollars
So, probability that a randomly selected firm will earn less than 100 million dollars is given by = P(X < 100 million dollars)
P(X < 100) = P(
<
) = P(Z < 1) = 0.8413 {using z table]
Therefore, probability that a randomly selected firm will earn less than 100 million dollars is 0.8413.