Using equations of linear model function, the number of hours Jeremy wants to skate is calculated as 3.
<h3>How to Write the Equation of a Linear Model Function?</h3>
The equation that can represent a linear model function is, y = mx + b, where m is the unit rate and b is the initial value.
Equation for Rink A:
Unit rate (m) = (35 - 19)/(5 - 1) = 16/4 = 4
Substitute (x, y) = (1, 19) and m = 4 into y = mx + b to find b:
19 = 4(1) + b
19 - 4 = b
b = 15
Substitute m = 4 and b = 15 into y = mx + b:
y = 4x + 15 [equation for Rink A]
Equation for Rink B:
Unit rate (m) = (39 - 15)/(5 - 1) = 24/4 = 6
Substitute (x, y) = (1, 15) and m = 6 into y = mx + b to find b:
15 = 6(1) + b
15 - 6 = b
b = 9
Substitute m = 6 and b = 9 into y = mx + b:
y = 6x + 9 [equation for Rink B]
To find how many hours (x) both would cost the same (y), make both equation equal to each other
4x + 15 = 6x + 9
4x - 6x = -15 + 9
-2x = -6
x = 3
The hours Jeremy wants to skate is 3.
Learn more about linear model function on:
brainly.com/question/15602982
#SPJ1
Answer: option d. the argument is valid by the law of detachment.
The law of detachment consists in make a conlcusion in this way:
Premise 1) a => b
Premise 2) a is true
Conclusion: Then, b is true
Note: the order of the premises 1 and 2 does not modifiy the argument.
IN this case:
Premise 1) angle > 90 => obtuse
Premise 2) angle = 102 [i.e. it is true that angle > 90]]
Conclusion: it is true that angle is obtuse
Answer:
x = -9
Step-by-step explanation:
First, divide both sides by 12 to isolate the expression, x + 11
12(x + 11)/12 = 24/12
x + 11 = 2
Then, subtract 11 from both sides
x + 11 = 2
- 11 - 11
x = -9
The two pairs of polar coordinates for the given point (3, -3) with 0° ≤ θ < 360° are (3√2, 135°) and (3√2, 315°).
<h3>What is a polar coordinate?</h3>
A polar coordinate is a two-dimensional coordinate system, wherein each point on a plane is typically determined by a distance (r) from the pole (origin) and an angle (θ) from a reference direction (polar axis).
Next, we would determine the distance (r) and angle (θ) as follows:
r = √(3² + (-3)²)
r = √(9 + 9)
r = 3√2.
θ = tan⁻¹(-3/3)
θ = tan⁻¹(-1)
θ = 3π and 7π/4 (second and fourth quadrants).
Converting to degrees, we have:
θ = 135° and 315°.
Read more on polar coordinates here: brainly.com/question/3875211
#SPJ1
Complete Question:
Determine two pairs of polar coordinates for the point (3, -3) with 0° ≤ θ < 360°