Answer:
the angle between their paths is <em>100.8°</em>
Step-by-step explanation:
From the given information, you can construct a triangle, just like the one in the figure.
We will use the <em>Cosine Rule</em> which is:
c² = b² + a² - 2 b c cos(θ)
where
- c = 16 miles
- b = 8 miles
- a = 12 miles
Therefore,
2 b c cos(θ) = b² + a² - c²
cos(θ) = (b² + a² - c²) / 2 b c
θ = cos⁻¹( (b² + a² - c²) / (2 b c) )
θ = cos⁻¹( (8² + 12² - 16²) / 2(8)(16) )
<em>θ = 100.8°</em>
<em></em>
Therefore, the angle between their paths is <em>100.8°</em>
1.87 is 8.5% of 22 so 8.5% of 80 is 0.085 x 80 so $6.80
Answer:
7.5
Step-by-step explanation:
Using pythagoras theorem
Sqrt(9^2-5^2)=7.483
The square root of 12 is 3.4641 so 3.6 would be greater than 3.4641
Answer:
RADIUS
==================================
PROBLEM
Mary’s bicycle wheel has a circumference of 226.08 cm². What is its radius?
SOLUTION
We can solve this problem using the circumference formula in which π stands for ( 3.14 ), C stands for circumference itself and r stands for radius.
\bold{Formula \: || \: C = 2πr}Formula∣∣C=2πr
\tt{226.08 = 2(3.14) r}226.08=2(3.14)r
'Now to find the radius,Substitute 226.08 for c which is circumference in the formula.
\begin{gathered} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \tt{C = 2πr} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \tt{226.08 = 2(3.14)\red{r}} \\ \\ \: \: \: \: \: \: \: \: \large \tt{ \frac{226.08}{6.28} = \cancel\frac{6.28 \red{r}}{6.28} } \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{\tt\green{C = 36}}\end{gathered}
C=2πr
226.08=2(3.14)r
6.28
226.08
=
6.28
6.28r
C=36
To check:
\begin{gathered} \small\begin{array}{|c|}\hline \bold{circumference }\\ \\ \tt{C = 2πr} \\ \tt{C = 2(3.14) (36\:cm) } \\ \tt{C = 2(113.04\:cm) } \\ \underline{\tt \green{C = 226.08\:cm }} \\ \hline \end{array} \end{gathered}
circumference
C=2πr
C=2(3.14)(36cm)
C=2(113.04cm)
C=226.08cm
FINAL ANSWER
If Mary's Bicycle has a circumference of 226.08 cm then the radius is 36.
\boxed{ \tt \red{r = 36}}
r=36
==================================
#CarryOnLearning