I hope this helps you
-x+4=2x+1
4-1=2x+x
3=3x
x=1
y=-1+4
y=3
![\bf \lim\limits_{x\to \infty}~\left( \cfrac{1}{8} \right)^x\implies \lim\limits_{x\to \infty}~\cfrac{1^x}{8^x}\\\\[-0.35em] ~\dotfill\\\\ \stackrel{x = 10}{\cfrac{1^{10}}{8^{10}}}\implies \cfrac{1}{8^{10}}~~,~~ \stackrel{x = 1000}{\cfrac{1^{1000}}{8^{1000}}}\implies \cfrac{1}{8^{1000}}~~,~~ \stackrel{x = 100000000}{\cfrac{1^{100000000}}{8^{100000000}}}\implies \cfrac{1}{8^{100000000}}~~,~~ ...](https://tex.z-dn.net/?f=%5Cbf%20%5Clim%5Climits_%7Bx%5Cto%20%5Cinfty%7D~%5Cleft%28%20%5Ccfrac%7B1%7D%7B8%7D%20%5Cright%29%5Ex%5Cimplies%20%5Clim%5Climits_%7Bx%5Cto%20%5Cinfty%7D~%5Ccfrac%7B1%5Ex%7D%7B8%5Ex%7D%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7Bx%20%3D%2010%7D%7B%5Ccfrac%7B1%5E%7B10%7D%7D%7B8%5E%7B10%7D%7D%7D%5Cimplies%20%5Ccfrac%7B1%7D%7B8%5E%7B10%7D%7D~~%2C~~%20%5Cstackrel%7Bx%20%3D%201000%7D%7B%5Ccfrac%7B1%5E%7B1000%7D%7D%7B8%5E%7B1000%7D%7D%7D%5Cimplies%20%5Ccfrac%7B1%7D%7B8%5E%7B1000%7D%7D~~%2C~~%20%5Cstackrel%7Bx%20%3D%20100000000%7D%7B%5Ccfrac%7B1%5E%7B100000000%7D%7D%7B8%5E%7B100000000%7D%7D%7D%5Cimplies%20%5Ccfrac%7B1%7D%7B8%5E%7B100000000%7D%7D~~%2C~~%20...)
now, if we look at the values as "x" races fast towards ∞, we can as you see above, use the values of 10, 1000, 100000000 and so on, as the value above oddly enough remains at 1, it could have been smaller but it's constantly 1 in this case, the value at the bottom is ever becoming a larger and larger denominator.
let's recall that the larger the denominator, the smaller the fraction, so the expression is ever going towards a tiny and tinier and really tinier fraction, a fraction that is ever approaching 0.
Answer:
2 AND 4
Step-by-step explanation:
Brainliest please
Answer:
Step-by-step explanation:
i think it 1.8
Hi! Hope this helps, and if it does, please mark brainliest!
Answer:
y = 43 and x = 90
Step-by-step explanation:
We know that a triangle is 180 degrees (each side equals 180 since they are their own triangles) We will focus on the left triangle. Since x is a right angle, it is 90 degrees. Since there is a slash across the two sides of the main triangle, that means both sides are equal. This means that the bottom left angle, the one above b, is equal to 47 degrees. That means we know two angles out of 3. For the sake of simplicity, the bottom left angle, the one above b, is point z. So point z is 47, and x is 90, added they are 137. Subtract that from 180, you will get 43. 43 is y.