1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Daniel [21]
3 years ago
7

F(x)=x-4 Find f(-5)???

Mathematics
1 answer:
cestrela7 [59]3 years ago
7 0

Answer:

-9

Step-by-step explanation:

Given function:

  • f(x)=x-4

Need to find f(-5)

  • f(-5) ⇒ x = -5
  • f(-5) = -5 -4 = -9
You might be interested in
The elevation of a city is positive if the city is above sea level and negative if below sea level. The elevation of New Orleans
kaheart [24]

Answer:

Yes

Step-by-step explanation:

5 0
3 years ago
If f(x) = 9x10 tan−1x, find f '(x).
djverab [1.8K]

Answer:

\displaystyle f'(x) = 90x^9 \tan^{-1}(x) + \frac{9x^{10}}{x^2 + 1}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle f(x) = 9x^{10} \tan^{-1}(x)

<u>Step 2: Differentiate</u>

  1. [Function] Derivative Rule [Product Rule]:                                                   \displaystyle f'(x) = \frac{d}{dx}[9x^{10}] \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]
  2. Rewrite [Derivative Property - Multiplied Constant]:                                  \displaystyle f'(x) = 9 \frac{d}{dx}[x^{10}] \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]
  3. Basic Power Rule:                                                                                         \displaystyle f'(x) = 90x^9 \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]
  4. Arctrig Derivative:                                                                                         \displaystyle f'(x) = 90x^9 \tan^{-1}(x) + \frac{9x^{10}}{x^2 + 1}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

7 0
3 years ago
Doña Mercedes' debt can be paid in 32 weeks, as long as $ 50 is paid in the first week, $ 80 in the second week, $ 110 in the th
KengaRu [80]

Answer:

Step-by-step explanation:

21

that is all

8 0
3 years ago
Select the correct product. (x 2 + 6x + 9)(3x - 1)
Lorico [155]
I got answer choice A for this one.
7 0
3 years ago
Read 2 more answers
Danny had a bag of cheese puffs before he ate 14 puffs there were 122 puffs in the bag his mouth m said he has to split the rest
marissa [1.9K]
122-14 = 108
108÷3 = 36
Your answer is 36
5 0
3 years ago
Other questions:
  • Determine the slope of the line shown on the graph
    12·2 answers
  • △ABC is mapped to △A′B′C′ using each of the given rules.
    11·1 answer
  • [Will mark as brainliest]
    11·1 answer
  • 182632929236+188274739393974473
    9·2 answers
  • 9x^2 - 16x + 60 = 0
    7·1 answer
  • X
    6·1 answer
  • How do I solve 8k-9(4K+4)
    15·1 answer
  • Meow help me pls :(((
    11·1 answer
  • Write y=2|x+2|−3 as a piecewise function.
    14·1 answer
  • Forty-eight divided by one hundred equals what?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!