Answer:
b
Step-by-step explanation:
The value of expanding (2x -3)^4 is 16x^4 + 96x^3 +216x^2 -216x + 81
<h3>How to expand the expression?</h3>
The expression is given as:
(2x -3)^4
Using the binomial expansion, we have:

Evaluate the combination factors.
So, we have:

Evaluate the exponents and the products

Hence, the value of expanding (2x -3)^4 is 16x^4 + 96x^3 +216x^2 -216x + 81
Read more about binomial expansions at:
brainly.com/question/13602562
#SPJ1
6) Copy and complete each sequence below.A)1,3,6,10,___,____b)8,7,5,2,____,____c)1,4,9,16,____,_____d) What is the pattern for c
Free_Kalibri [48]
Answer:
A) 15,21
B) -2,-7
C) 25,36
D) These numbers are square roots of 1,2,3,4,....
Hope this will help:)
The factors of a polynomial function are the zeros of the function
It is true that x - 3 is a factor of m(x) = x^3 - x^2 - 5x - 3
<h3>How to show why the x - 3 is a factor</h3>
The function is given as:
m(x) = x^3 - x^2 - 5x - 3
The factor is given as:
x - 3
Set the factor to 0
x - 3 = 0
Solve for x
x = 3
Substitute 3 for x in the function
m(3) = 3^3 - 3^2 - 5(3) - 3
Evaluate
m(3) =0
Since the value of m(3) is 0, then x - 3 is a factor of m(x) = x^3 - x^2 - 5x - 3
Read more about factors at:
brainly.com/question/11579257