Step-by-step explanation:
The equation of a circle can be the expanded form of
\large \text{$(x-a)^2+(y-b)^2=r^2$}(x−a)
2
+(y−b)
2
=r
2
where rr is the radius of the circle, (a,\ b)(a, b) is the center of the circle, and (x,\ y)(x, y) is a point on the circle.
Here, the equation of the circle is,
\begin{gathered}\begin{aligned}&x^2+y^2+10x-4y-20&=&\ \ 0\\ \\ \Longrightarrow\ \ &x^2+y^2+10x-4y+25+4-49&=&\ \ 0\\ \\ \Longrightarrow\ \ &x^2+y^2+10x-4y+25+4&=&\ \ 49\\ \\ \Longrightarrow\ \ &x^2+10x+25+y^2-4y+4&=&\ \ 49\\ \\ \Longrightarrow\ \ &(x+5)^2+(y-2)^2&=&\ \ 7^2\end{aligned}\end{gathered}
⟹
⟹
⟹
⟹
x
2
+y
2
+10x−4y−20
x
2
+y
2
+10x−4y+25+4−49
x
2
+y
2
+10x−4y+25+4
x
2
+10x+25+y
2
−4y+4
(x+5)
2
+(y−2)
2
=
=
=
=
=
0
0
49
49
7
2
From this, we get two things:
\begin{gathered}\begin{aligned}1.&\ \ \textsf{Center of the circle is $(-5,\ 2)$.}\\ \\ 2.&\ \ \textsf{Radius of the circle is $\bold{7}$ units. }\end{aligned}\end{gathered}
1.
2.
Center of the circle is (−5, 2).
Radius of the circle is 7 units.
Hence the radius is 7 units.
Hello!
To find the equation of a line parallel to y = 3x - 3 and passing through the point (4, 15), we need to know that if two lines are parallel, then their slopes are equivalent.
This means that we create a new equation in slope-intercept form, which includes the original slope, which is equal to 3.
In slope-intercept form, we need a y-intercept. So, we would substitute the given ordered pair into the new equation with the same slope and solve.
Remember that slope-intercept form is: y = mx + b, where m is the slope and b is the y-intercept.
y = 3x + b (substitute the ordered pair (4, 15))
15 = 3(4) + b (simplify)
15 = 12 + b (subtract 12 from both sides)
3 = b
Therefore, the equation for the line parallel to the line y = 3x - 3, and passing through the point (4, 15) is y = 3x + 3.
6 goes 4 times into 28 because 6 x 4 = 24