1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xz_007 [3.2K]
3 years ago
11

Estimate the total weight of two boxes that weigh 9.4 pounds and 62.6 pounds using rounding and compatible numbers. Wich estimat

e is closer to the actual total weight? why? PLEASE HELP ITS DUE TOMORROW AND IM SO FRUSTRATED I JUST TURNED ELEVEN BE EASY ON ME AND PLEASE HELP!!!!!!
Mathematics
1 answer:
pochemuha3 years ago
4 0

Compatible numbers are not well defined things. The idea with compatible numbers is to replace the numbers in the problem with numbers that are approximately the same and yet the calculations are easy. In this problem what I think is expected is to replace 9.4 with 10 and 62.6 with 60 giving an approximate sum of 10 + 60 = 70.

Rounding has a more precise definition. If you are rounding to an integer then 9.4 rounds to 9 and 62.6 to 67. This gives an approximate sum of 9 + 63 = 72.

Source: http://mathcentral.uregina.ca/QQ/database/QQ.09.08/h/jeff1.html

You might be interested in
Square root of 3 over square root of 2 - square root of 2 over square root of 2
nekit [7.7K]

Answer:

     

Step-by-step explanation:

4 0
3 years ago
The least common multiple of 2, 5, 6, and 9 is <br>     
tangare [24]
90 because that's the smallest number they all go into.

90/2 = 45
90/5 = 18
90/6 = 15
90/9 = 10
7 0
4 years ago
Read 2 more answers
Help me please!!!!!!!!!!!!!!!!!!!!
fomenos
The definition of a linear equation is  an equation between two variables that gives a straight line when plotted on a graph<span>. Since the bacterial colony is doubling at an even rate then it should create a straight line when plotted. I hope this is helpful!</span>
6 0
4 years ago
Use the Pohlig–Hellman algorithm (Theorem 2.32) to solve the discrete logarithm problem gx = a in Fp in each of the following ca
qaws [65]

Answer:

(a) The solution is x=47.

(b) The solution is x=223755.

(c) The solution is x=33703314.

(d) The solution is x=984414.

Step-by-step explanation:

(a) Step 1 is to solve  

             

q    e        h = g^{ (p-1)} /q     b = a^{(p-1)} /q     h^{y} = b

2   4        265                   250                 Calculation I

3   3       374                    335                  Calculation II

Now Solving for calculation I:

x≡x_{0} +x_{1} q+…+x_{e-1} q^{e-1} (mod\ 2^{4} )≡0x_{0}+2x_{1} +4x_{2} +8x_{3} (mod\ 2^{4} )

Solve (265)x=250(mod 433) for x0,x1,x2,x3.

x0:(26523)x0=25023(mod 433)⟹(432)x0=432⟹x0=1

x1:(26523)x1=(250×265−x0)22(mod 433)=(250×265−1)22(mod433)=(250×250)22(mod 433)⟹(432)x1=432⟹x1=1

x2:(26523)x2=(250×265−x0−2x1)21(mod 433)=(250×265−3)22(mod 433)=(250×195)21(mod 433)⟹(432)x2=432⟹x2=1

x3:(26523)x3=(250×265−x0−2x1−4x2)20(mod 433)=(250×265−7)20(mod 433)=(250×168)20(mod 433)⟹(432)x3=432⟹x3=1

Thus, our first result is:

        x≡x0+2x1+4x2+8x3(mod24)≡1+2+4+8(mod24)≡15(mod24)

Now for Calculation II:

        x≡x_{0} +x_{1} q+…+x_{e-1} q^{e-1} (mod\ 3^{3} )≡ x_{0}*0+3x_{1} +9x_{2}  (mod3^{3})

 

Solve (374)x=335(mod 433) for x0,x1,x2.

x0:(37432)x0=33532(mod 433)⟹(234)x0=198⟹x0=2. Note: you only needed to test x0=0,1,2, so it is clear which one x0 is.

x1:(37432)x1=(335×374−x0)31(mod 433)=(335×374−2)31(mod 433)=(335×51)31(mod 433)=1(mod 433)⟹(234)x1=1(mod 433)⟹x1=0

x2:(37432)x2=(335×374−x0−3x1)30(mod 433)=(335×374−2)30(mod 433)=(335×51)30(mod 433)=198(mod 433)⟹(234)x2=198(mod 433)⟹x2=2. Note: you only needed to test x2=0,1,2, so it is clear which one x2 is.

Thus, our second result is:

           x≡x0+3x1+9x2(mod 33)≡2+0+9×2(mod 33)≡20(mod 33)

Step 2 is to solve

x ≡15 (mod 24 ),

x ≡20 (mod 33 ).

The solution is x=47.

(b) Step 1 is to solve

q       e              h = g^{ (p-1)} /q     b = a^{(p-1)} /q        h^{y} = b

2       10            4168                   38277              523

3        6              674719               322735           681  

h^{y} = b is calculated using same steps as in part(a).

Step 2 is to solve

x ≡ 523 (mod 210 ),

x ≡ 681 (mod 36 ).

The solution is x=223755 .

(c) Step 1 is to solve

q             e         h = g^{ (p-1)} /q     b = a^{(p-1)} /q                h^{y} = b

2             1         41022298               1                             0

29           5        4                              11844727              13192165

 

In order to solve the discrete logarithm problem modulo 295 , it is best to solve  it step by step. Note that 429 = 18794375 is an element of order 29 in F∗p . To  avoid notational confusion, we use the letter u for the exponents.

¢294

First solve 18794375u0 = 11844727

                                        = 987085.

The solution is u0 = 7.

The value of u so far is u = 7.

¢293

Solve 18794375u1 = 11844727·4−7

                               = 8303208.

The solution is u1 = 8.

The value of u so far is u = 239 = 7 + 8 · 29.

¢292

Solve 18794375u2 = 11844727 · 4−239

                                = 30789520.

The solution is

u2 = 26. The value of u so far is u = 22105 = 7 + 8 · 29 + 26 · 292 .

¢291

Solve 18794375u3 = 11844727 · 4−22105

                               = 585477.

The solution is

u3 = 18. The value of u so far is u = 461107 = 7 + 8 · 29 + 26 · 292 + 18 · 293 .

¢290

Solve 18794375u4 = 11844727 · 4−461107

                                = 585477.

The solution is

u4 = 18. The final value of u is u = 13192165 = 7 + 8 · 29 + 26 · 292 + 18 · 293 +  18 · 294 , which is the number you see in the last column of the table.

 

Step 2 is to solve

x ≡ 13192165 (mod 295 ).

x ≡ 0 (mod 2),

The solution is x=33703314 .

(d) Step 1 is to solve

q               e        h = g^{ (p-1)} /q     b = a^{(p-1)} /q     h^{y} = b

2               1           1291798           1                       0

709           1          679773             566657           322

911             1          329472            898549           534

To solve the DLP’s modulo 709 or 911, they can be easily solved by an exhaustive search on a computer, and a collision  algorithm is even faster.

Step 2 is to solve

x ≡ 0 (mod 2),

x ≡ 322 (mod 709),

x ≡ 534 (mod 911).

The solution is x=984414

3 0
3 years ago
Help help math math
Artyom0805 [142]

Answer:

32

Step-by-step explanation:

hope this helps :)

7 0
3 years ago
Read 2 more answers
Other questions:
  • What is the measure of E, in degrees?
    10·1 answer
  • 3(5x - 2) = 11x<br>I am to find x​
    11·2 answers
  • Can someone help me
    6·1 answer
  • What is the equation of an asymptote of the hyperbola whose equation is (x-2)^2/4 - (y-1)^2/36 = 1?
    6·1 answer
  • - 2(w+6) +9&lt; - 15<br><br>I'm make you brainliest​
    13·2 answers
  • Help asap!!!!!!!!!!!!!!!!!!!!!!!!
    13·1 answer
  • Faye reads 9 pages per minute. Which equation best represents how many pages, p, she can read in m minutes?
    8·2 answers
  • Guys please help me with this question, I’d appreciate it a lot
    7·2 answers
  • Please help ! 1 &amp; 2 :) ​
    12·2 answers
  • Need help!!!<br> x is Interest<br> P is Principal<br> 3% is the rate<br> Need answer for h!!!!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!