Traits will sort themselves into gamete independently of what other traits are doing.” this is mendel’s law of <span>independent assortment.
</span>Mendel's law of independent assortment states<span> that genes </span>do<span> not influence each other with regard to the sorting of alleles into gametes; every possible combination of alleles for every gene is equally likely to occur.</span>
Although the operation of natural selection requires that genotypes differ in fitness, for some geneticists it seems easier to understand natural selection than fitness. Partly this reflects the fact that the word “fitness” has been used to mean subtly different things. Here I distinguish among these meanings (e.g., individual versus absolute versus relative fitness) and explain how evolutionary geneticists use fitness to predict changes in the genetic composition
Answer:
(a) (Glu)zo or(Phe-Met)3 at pH 7.0
O (Glu)zo ✔
O (Phe-Met)s ❌
(b) (Gly) zo or (Lys-Ala)3 at pH 7.0:
O (Gly12) ❌
O (Lys-Ala)✔
(c) (Ala-Asp-Gly)s or (Asn-Ser-His)s at pH 3.0:
O (Asn-Ser-His)s ✔
O (Ala-Asp-Gly)s ❌
(d) (Ala-Ser-Gly)s or (Asn-Ser-His)s at pH 6.0:
O(Ala-Ser-Gly)s ❌
O (Asn-Ser-Hish)s ✔
Explanation:
Polypeptides that has polar or charged side chains are more soluble than polypeptides with nonpolar side chains.
(a) At ph 7.0
(Glu)20 is negatively charged at pH 7 and more soluble
(Phe-Met)3 is observed to be less polar and less soluble
(b)At ph 7.0
(Lys-Ala)3 is positively charged (polar) and more soluble
(Gly)20 is uncharged as only the amino- and carboxyl-terminal groups are charged as its less polar and less soluble too.
(c) At pH 6.0
(Asn-Ser-His)5 has polar Asn side chains and partially protonated His side chains and it's more soluble unlike the (Ala-Asp-Gly)s at that pH.
(d) At pH 3.0
(Asn-Ser-His)s as partially protonated carboxylate groups of Asp residues and it is also neutral but the imidazole groups of His residues are fully protonated and positively charged. Hence it's more soluble than the (Ala-Ser-Gly)s at that particular pH.