That would be 1/5 in simplest form you can divide both numbers by 12 and when you do you get 1/5. Hope this helps!
Answer:
See below
Step-by-step explanation:
1.
-6(a + 8)
Distribute the -6.
-6a - 48
2.
4(1 + 9x)
Distribute the 4.
4 + 36x or 36x + 4
3.
6(-5n + 7)
Distribute the 6.
-30n + 42
4.
(9m + 10) * 2
Rewrite.
2(9m + 10)
Distribute the 2.
18m + 20
5.
(-4 - 3n) * -8
Rewrite.
-8(-4 - 3n)
Distribute the -8.
32 + 24n or 24n + 32
6.
8(-b - 4)
Distribute the 8.
-8b - 32
7.
(1 - 7n) * 5
Rewrite.
5(1 - 7n)
Distribute the 5.
5 - 35n or -35n + 5
8.
-6(x + 4)
Distribute the -6.
-6x - 24
9.
5(3m - 6)
Distribute the 5.
15m - 30
10.
(-6p + 7) * -4
Rewrite.
-4(-6p + 7)
Distribute the -4.
24p - 28
11.
5(b - 1)
Distribute the 5.
5b - 5
12.
(x + 9) * 5
Rewrite.
5(x + 9)
Distribute the 5.
5x + 45
Answer:
(F.) the mode of the data for website K is greater than the mode of the data from website L
Step-by-step explanation:
Mode simply means the parameter that occurs the most.
In website K, the one that occurs the most is 8 hours while in website L, the one that occurs the most is 2 hours.
This means that mode of website K is greater than that of website L.
Thus,statement F is correct
Range is the difference between the highest value and the lowest value..
For website K, Range = 14 - 1 = 13
For website L, Range = 13 - 1 = 12
Thus,range of both websites are not the same and as such statement G is wrong.
For a symmetrical distribution, the left and right hand sides of the centre value line of the distribution have to mirror each other.
In this case neither website K nor L have that. Thus, statement H is not correct.
Skewed to the left means that more o
dot points are found to the left of the graph.
For website L, more dot points are located to the left while for website K, it's not the case. Thus, statement J is not correct
Hello,
I note (a,b,c) the result of a quarters, b dimes and c pennies:
2 solutions:
106=( 3, 3, 1)=( 1, 8, 1)
106=( 0, 0, 106) but : 100= 0*25+ 0*10+ 100
106=( 0, 1, 96) but : 100= 0*25+ 1*10+ 90
106=( 0, 2, 86) but : 100= 0*25+ 2*10+ 80
106=( 0, 3, 76) but : 100= 0*25+ 3*10+ 70
106=( 0, 4, 66) but : 100= 0*25+ 4*10+ 60
106=( 0, 5, 56) but : 100= 0*25+ 5*10+ 50
106=( 0, 6, 46) but : 100= 0*25+ 6*10+ 40
106=( 0, 7, 36) but : 100= 0*25+ 7*10+ 30
106=( 0, 8, 26) but : 100= 0*25+ 8*10+ 20
106=( 0, 9, 16) but : 100= 0*25+ 9*10+ 10
106=( 0, 10, 6) but : 100= 0*25+ 10*10+ 0
106=( 1, 0, 81) but : 100= 1*25+ 0*10+ 75
106=( 1, 1, 71) but : 100= 1*25+ 1*10+ 65
106=( 1, 2, 61) but : 100= 1*25+ 2*10+ 55
106=( 1, 3, 51) but : 100= 1*25+ 3*10+ 45
106=( 1, 4, 41) but : 100= 1*25+ 4*10+ 35
106=( 1, 5, 31) but : 100= 1*25+ 5*10+ 25
106=( 1, 6, 21) but : 100= 1*25+ 6*10+ 15
106=( 1, 7, 11) but : 100= 1*25+ 7*10+ 5
106=( 1, 8, 1) is good
106=( 2, 0, 56) but : 100= 2*25+ 0*10+ 50
106=( 2, 1, 46) but : 100= 2*25+ 1*10+ 40
106=( 2, 2, 36) but : 100= 2*25+ 2*10+ 30
106=( 2, 3, 26) but : 100= 2*25+ 3*10+ 20
106=( 2, 4, 16) but : 100= 2*25+ 4*10+ 10
106=( 2, 5, 6) but : 100= 2*25+ 5*10+ 0
106=( 3, 0, 31) but : 100= 3*25+ 0*10+ 25
106=( 3, 1, 21) but : 100= 3*25+ 1*10+ 15
106=( 3, 2, 11) but : 100= 3*25+ 2*10+ 5
106=( 3, 3, 1) is good
106=( 4, 0, 6) but : 100= 4*25+ 0*10+ 0