1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
weqwewe [10]
3 years ago
14

Write the quadratic function in vertex form. y = x2 + 4x + 7

Mathematics
1 answer:
larisa86 [58]3 years ago
8 0

Complete the square on the right side of the equation.

 

Use the form ax^2 + bx + cax^2 + bx + c, to find the values of aa , bb, and cc.

a<span>=1, b</span><span>=4, c</span><span>=7</span>

Consider the vertex form of a parabola.

a(x + d)^<span>2  </span>+ e

 

Find the value of <span>d<span> using the formula <span>d =<span><span> b</span><span><span> / 2</span>a</span></span></span></span></span>

Multiply <span>2<span> by <span>1<span> to get <span><span>2 ⋅ 1</span>.</span></span></span></span></span>

<span>d = 4 / (2 * 1)</span>

d = 2

<span> </span>

Find the value of <span>e<span> using the formula <span><span>e =</span><span><span>c<span> −</span></span><span>b<span><span>^2 / 4</span>a</span></span></span></span></span></span>

<span> </span>

Multiply <span>4<span> by <span>1<span> to get <span>4 ⋅ 1</span></span></span></span></span>

E =<span> 7<span> – ((4)</span></span><span>^2</span><span> / (4 ⋅ 1</span>))

Reduce the expression by cancelling the common factors.

E =<span> 7<span> – 1 ⋅ 4</span></span>

Subtract 44 from 77 to get 33.

e = 3

Substitute the values of a, d, and e into the vertex form a(x + d)^2 + e.

 

(x <span>+  2)</span>^2 + 3

 

Therefore, the vertex form of the quadratic equation is:

 

<span> </span>

y =<span><span> (<span><span>x + 2</span>)</span></span><span>^2 + 3</span></span>

You might be interested in
Can someone help please :) i’ll mark brilliant
stiks02 [169]

Answer:

X= 23 degrees

Step-by-step explanation:

117 degrees minus 94 equals x

x=23

4 0
3 years ago
Evaluate the limit
wel

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

3 0
2 years ago
Read 2 more answers
Drag each graph to show if the system of linear equations it represents will have no
zimovet [89]
That’s a good question. But I don’t know the answer
3 0
3 years ago
The minimum value of f(x) = x3 – 3x2 – 9x + 2 on the interval [–4, 0] is
garri49 [273]

Answer:

-74

Step-by-step explanation:

Graph the function. See attached picture. Between the interval where -4 > x < 0, the graph rises up to a peak and descends back down when x = 0. This means the minimum value will be where x = -4.

Substitute x = -4 into the equation.

f(-4) = (-4)^3 -3(-4)^2 - 9(-4) + 2

f(-4) = -64 -3(16) +36 + 2

f(-4) = -64 - 48 + 36 + 2

f(-4) = -74

5 0
4 years ago
Can someone good at math give me a hand I really need some w
dedylja [7]
What is the question that u need help with
5 0
3 years ago
Other questions:
  • I need help. Someone pls answer this for me, I dont understand at all ._. Perfect square and cubes
    10·1 answer
  • Hi can someone plz help me with letter A and if u know how to do any of the other ones!? Thanks sm!!!
    10·1 answer
  • Consider the words typically associated with geometry. Are there any words that would be hard to precisely define? What words ca
    8·2 answers
  • Mark sold x pens for $2 each. He received less than $80 from the sale. Find the greatest possible number of pens he sold
    12·2 answers
  • If 5 worksites take 31.5 hours to prepare, how long will it take to prepare 13 worksites
    14·2 answers
  • Which angle has a terminal side in quadrant III? –192° –88° 412° 579°
    7·1 answer
  • Eighteen cans of dog food were divided amount 12 dogs. Two dogs did not eat. Choose the expression that shows how many cans of f
    10·1 answer
  • Round to the nearest thousand 706421
    5·2 answers
  • What is 1/10 of 0.03 ?
    6·2 answers
  • Given the triangle below find the measure of ZF and ZD.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!