Answer:
![\texttt{Equation of the tide is f(t)= }4.1 + 13.1 sin\left (\frac{\pi t}{15.2} \right )](https://tex.z-dn.net/?f=%5Ctexttt%7BEquation%20of%20the%20tide%20is%20f%28t%29%3D%20%7D4.1%20%2B%2013.1%20sin%5Cleft%20%28%5Cfrac%7B%5Cpi%20t%7D%7B15.2%7D%20%5Cright%20%29)
Step-by-step explanation:
Let us consider this as sine function,
Equation of this function can be represented as
f(t) = a + b sin (ωt) ---------------eqn 1
Where a, and b are constants, we need to find values of a and b.
Let us consider at time time, t = 0 low tide occurs,
f (0) = 4.1 feet
Substituting in eqn 1
f(0) = a + b sin (ωx0)
4.1 = a + b x 0
a = 4.1
f(t) = 4.1 + bsin(ωt) ---------------eqn 2
The maximum sine function is 1, so for high tide sinωt = 1
Substituting in eqn 2
17.2 = 4.1 + b x 1
b = 17.2 -4.1 = 13.1 feet
f(t) = 4.1 + 13.1 sinωt --------------------eqn 3
The maximum of sine occurs at 7.6 hours, sinωt value is 1 at t = 7.6 hours
1 =sin(ω x 7.6)
![\omega \times 7.6=\frac{\pi}{2}\\\\\omega = \frac{\pi}{15.2}](https://tex.z-dn.net/?f=%5Comega%20%5Ctimes%207.6%3D%5Cfrac%7B%5Cpi%7D%7B2%7D%5C%5C%5C%5C%5Comega%20%3D%20%5Cfrac%7B%5Cpi%7D%7B15.2%7D)
![\texttt{Equation of the tide is f(t)= }4.1 + 13.1 sin\left (\frac{\pi t}{15.2} \right )](https://tex.z-dn.net/?f=%5Ctexttt%7BEquation%20of%20the%20tide%20is%20f%28t%29%3D%20%7D4.1%20%2B%2013.1%20sin%5Cleft%20%28%5Cfrac%7B%5Cpi%20t%7D%7B15.2%7D%20%5Cright%20%29)