Area = pi * radius^2
radius = diameter/2 = 26/2 = 13 feet
Area = 3.14 * (13^2)
Area = 3.14 * 169 = 530.66 ft^2
4 divided by 12 is 1/3.
So, she would sprinkle 1/3 of a gram on each cupcake.
Answer:
0.27 repeating.
Step-by-step explanation:
So to solve this we just have to use division.
1 clearly doesnt go into 3 at least one time, so we can add a decimal point and add a 0 to make it 30.
11 goes into 30 2 times, so we have:
0.2
and 30-22=8
So we can add another 0 and make it 80.
Then 11 goes into 80 7 times. So we have:
0.27
and 80-77=3
So again, add the 0, we have 30.
11 goes into 30 2 times, so:
0.272
and 30-22=8
Add another 0 we get 80.
11 goes into 80 7 times.
So finally, we have:
0.2727.
This is a repeating decimal.
This can be shown as:
0.<u>27</u>
So this is your answer!
I was a bit confused with which one it was on your answer key, but knowing that it is 0.<u>27</u> I am guessing you can chose!
Hope this helps!
Answer is B. 48
By circle theorem, the angle at the centre of the circle is twice the angle at the circumference.
Answer:
(a) See attachment for tree diagram
(b) 24 possible outcomes
Step-by-step explanation:
Given


Solving (a): A possibility tree
If urn 1 is selected, the following selection exists:
![B_1 \to [R_1, R_2, R_3]; R_1 \to [B_1, R_2, R_3]; R_2 \to [B_1, R_1, R_3]; R_3 \to [B_1, R_1, R_2]](https://tex.z-dn.net/?f=B_1%20%5Cto%20%5BR_1%2C%20R_2%2C%20R_3%5D%3B%20R_1%20%5Cto%20%5BB_1%2C%20R_2%2C%20R_3%5D%3B%20R_2%20%5Cto%20%5BB_1%2C%20R_1%2C%20R_3%5D%3B%20R_3%20%5Cto%20%5BB_1%2C%20R_1%2C%20R_2%5D)
If urn 2 is selected, the following selection exists:
![B_2 \to [B_3, R_4, R_5]; B_3 \to [B_2, R_4, R_5]; R_4 \to [B_2, B_3, R_5]; R_5 \to [B_2, B_3, R_4]](https://tex.z-dn.net/?f=B_2%20%5Cto%20%5BB_3%2C%20R_4%2C%20R_5%5D%3B%20B_3%20%5Cto%20%5BB_2%2C%20R_4%2C%20R_5%5D%3B%20R_4%20%5Cto%20%5BB_2%2C%20B_3%2C%20R_5%5D%3B%20R_5%20%5Cto%20%5BB_2%2C%20B_3%2C%20R_4%5D)
<em>See attachment for possibility tree</em>
Solving (b): The total number of outcome
<u>For urn 1</u>
There are 4 balls in urn 1

Each of the balls has 3 subsets. i.e.
![B_1 \to [R_1, R_2, R_3]; R_1 \to [B_1, R_2, R_3]; R_2 \to [B_1, R_1, R_3]; R_3 \to [B_1, R_1, R_2]](https://tex.z-dn.net/?f=B_1%20%5Cto%20%5BR_1%2C%20R_2%2C%20R_3%5D%3B%20R_1%20%5Cto%20%5BB_1%2C%20R_2%2C%20R_3%5D%3B%20R_2%20%5Cto%20%5BB_1%2C%20R_1%2C%20R_3%5D%3B%20R_3%20%5Cto%20%5BB_1%2C%20R_1%2C%20R_2%5D)
So, the selection is:


<u>For urn 2</u>
There are 4 balls in urn 2

Each of the balls has 3 subsets. i.e.
![B_2 \to [B_3, R_4, R_5]; B_3 \to [B_2, R_4, R_5]; R_4 \to [B_2, B_3, R_5]; R_5 \to [B_2, B_3, R_4]](https://tex.z-dn.net/?f=B_2%20%5Cto%20%5BB_3%2C%20R_4%2C%20R_5%5D%3B%20B_3%20%5Cto%20%5BB_2%2C%20R_4%2C%20R_5%5D%3B%20R_4%20%5Cto%20%5BB_2%2C%20B_3%2C%20R_5%5D%3B%20R_5%20%5Cto%20%5BB_2%2C%20B_3%2C%20R_4%5D)
So, the selection is:


Total number of outcomes is:


