Answer:
1. The difference between the normal hemoglobin protein DNA sequence and the sickle cell hemoglobin DNA sequence is a base to base shift, in this case adenine (GAG) to thymine (GTG).
2. The difference affects the amino acid sequence of the protein by replacing glutamic acid (Glu) with valine (Val).
Explanation:
In sickle cell anemia, a change in the DNA nucleotide sequence is observed, where adenine is substituted by thymine, whose expression is the change in the amino acid sequence of globine β, incorporating valine instead of glutamic acid. This represents a molecular mutation - point mutation - by subtitution, which corresponds to missense mutation.
<u>Normal hemoglobin protein in a RBC</u>
DNA CTG ACT CCT GAG GAG AAG TCT
Amino acids Leu Thr Pro Glu Glu Lys Ser
<u>Sickle cell hemoglobin protein in a RBC</u>
DNA CTG ACT CCT <em>GTG</em> GAG AAG TCT
Amino acids Leu Thr Pro <em>Val</em> Glu Lys Ser
When GAG is transcribed to mRNA, the CUC codon is obtained, which codes for glutamic acid. Thymine substitution causes the DNA sequence to change to GTG, which is transcribed as CAC, the codon that encodes the amino acid valine. The <u>change from glutamic acid to valine in β-globin causes an altered hemoglobin, giving the abnormal erythrocytes observed in sickle cell disease</u>.
Either you have made error in your experiment or you might have wrong hypothesis.
Answer:
<em><u>ability to catalyze a reaction </u></em>
Explanation:
<em>Because it causes denaturation of the protein, but no chemical or electrical changes.</em>
Answer:
Schwann cells or neurilemma cells are the cells which form the myelin sheath around neuronal axons in the peripheral nervous system (PNS) only.
Neurilemma is the collective term used for cytoplasm and nuclei present around the myelin sheath which helps in the regeneration process of nerves.
A Schwann cell surrounds the axon, invaginate it and the plasmalemma of the Schwann cells joins and from a double membrane structure called mesaxon. This mesaxon starts wrapping the axon in spiral fashion and cytoplasm start condensing into the compact myelin sheath.
Answer:
Less energy is available to the upper trophic levels.