Answer:
Oxidative Phosphorylation
The mitochondria is one of the double membrane organelles with specialized energy-producing functions, that is, reduced nucleotides to finally form the cellular energy currency that is ATP. The 5'-triphosphate adenosine molecule (ATP) is synthesized in the inner mitochondrial membrane as a subsequent step to the electron transport chain through oxidative phosphorylation. This process takes advantage of the flow of protons or proton motive force, detected by an electrochemical differential of H +, to produce ATP through the complex V of the mitochondrial inner membrane. Together with photosynthesis, it is one of the most important energy transduction processes in the biosphere.
Oxidative phosphorylation: Synthesis of ATP
The mitochondria, in its inner membrane, is the place of the electron transport chain and oxidative phosphorylation, | Mitochondrial electronic transport and oxidative phosphorylation are the mechanisms that aerobic organisms use to synthesize ATP from reduced organic molecules.
Helium does not react with any other substances, thus the substance’s internal structure is never greatly affected and thus helium cannot have any chemical properties.
Answer:
The given statement is true.
Explanation:
A condition in which uncharacteristically large, unusual and immature RBCs known as megaloblasts gets generated by the bone marrow is known as megaloblastic anemia. The condition can arise due to many causes of which deficiencies of folate or vitamin B12 (cobalamin) are the most general ones. The mentioned vitamins perform an essential function in the generation of RBCs.
The signs and symptoms of megaloblastic anemia are lightheadedness, shortness of breath, pale skin, unusual heartbeat, and dizziness. Some of the other signs of the condition are weakness in muscles, pains and aches, and dyspnea.