Answer:
3. - 8n² -8n + 3
Step-by-step explanation:
(4n^4 - 8n +4) - (8n² + 4n^4 +1)
Firstly, open the brackets.
= 4n^4 - 8n +4 - 8n² - 4n^4 - 1
Now, group like terms.
= 4n^4 - 4n^4 - 8n² -8n - 1 + 4
4n^4 - 4n^4 cancel out with each other since one is negative and the other is positive. So we're left with - 8n² -8n - 1 + 4
= - 8n² -8n - 1 + 4
= - 8n² -8n + 3
Answer:
The answer is below
Step-by-step explanation:
Find the dimensions of the rectangle of maximum area with sides parallel to the coordinate axes that can be inscribed in the ellipse 4x² + 16y² = 16
Solution:
Given that the ellipse has the equation: 4x² + 16y² = 16
let us make x the subject of the formula, hence:
4x² + 16y² = 16
4x² = 16 - 16y²
Dividing through by 4:
x² = (16 - 16y²)/4
x² = 4 - 4y²
Taking square root of both sides:

The points of the rectangle vertices is at (x,y), (-x,y), (x,-y), (-x,-y). Hence the rectangle has length and width of 2x and 2y.
The area of a rectangle inscribed inside an ellipse is given by:
Area (A) = 4xy
A = 4xy

Therefore the length = 2x = 2√2, the width = 2y = 2/√2
Answer:
0.08
Step-by-step explanation:
![{5}^{ - 2} \times \sqrt[3]{8} \\ \\ = {5}^{ - 2} \times \sqrt[3]{ {2}^{3} } \\ \\ = \frac{1}{ {5}^{2} } \times 2 \\ \\ = \frac{1}{25} \times 2 \\ \\ = \frac{2}{25} \\ \\ =0.08](https://tex.z-dn.net/?f=%20%7B5%7D%5E%7B%20-%202%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B8%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%7B5%7D%5E%7B%20-%202%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B%20%7B2%7D%5E%7B3%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Cfrac%7B1%7D%7B%20%7B5%7D%5E%7B2%7D%20%7D%20%20%5Ctimes%202%20%5C%5C%20%20%5C%5C%20%20%20%3D%20%5Cfrac%7B1%7D%7B25%7D%20%20%5Ctimes%202%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Cfrac%7B2%7D%7B25%7D%20%5C%5C%20%5C%5C%20%3D0.08)

scalar multiplication, now, add them up
Answer:

Step-by-step explanation:
<u>9</u>/14 × 5/<u>3</u>
The factors can be canceled if they are factors of both the numerator of the first fraction and the denominator of the second fraction. The factors get cancelled leaving the second fraction to a whole number.
3/14 × 5
(3 × 5)/14
15/14