Answer:
m∠P = 82°
m∠Q = 49°
m∠R = 49°
Step-by-step explanation:
<em>In the isosceles triangle, the base angles are equal in measures</em>
In Δ PQR
∵ PQ = PR
∴ Δ PQR is an isosceles triangle
∵ ∠Q and ∠R are the base angles
→ By using the fact above
∴ m∠Q = m∠R
∵ m∠Q = (3x + 25)°
∵ m∠R = (2x + 33)°
→ Equate them
∴ 3x + 25 = 2x + 33
→ Subtract 2x from both sides
∵ 3x - 2x + 25 = 2x - 2x + 33
∴ x + 25 = 33
→ Subtract 25 from both sides
∵ x + 25 - 25 = 33 - 25
∴ x = 8
→ Substitute the value of x in the measures of angles Q and R
∵ m∠Q = 3(8) + 25 = 24 + 25
∴ m∠Q = 49°
∵ m∠R = 2(8) + 33 = 16 + 33
∴ m∠R = 49°
∵ The sum of the measures of the interior angles of a Δ is 180°
∴ m∠P + m∠Q + m∠R = 180°
→ Substitute the measures of angles Q and R
∵ m∠P + 49 + 49 = 180
∴ m∠P + 98 = 180
→ Subtract 98 from both sides
∵ m∠P + 98 - 98 = 180 - 98
∴ m∠P = 82°
John is correct because 0.5 is equal to one half and multiplying something by its half is just same as dividing something in two and half of 1.4 is 0.5
(sorry if it's too long feel free to shorten it)
The answer for this problem is B
From the given information, we get the value of ABC = 120°.
<h3>How to estimate the value of ABC?</h3>
Given: In the figure, O exists the center of the circle and OABC exists as a parallelogram.
Now, the radius of the circle exists
OA = OB = OC
Opposite sides of a parallelogram are equal
AB = OC and OA = BC
In ∆OAB,
OA = OB = AB and,
In ∆OCB,
OC = OB = BC
Therefore, ∆OAB and ∆OCB exist in equilateral triangles.
All angles of an equilateral triangle are equivalent to 60°.
Hence, ∠ABC = ∠OBA + ∠OBC
∠ABC = 60° + 60°
∠ABC = 120°
Therefore, the value of ∠ABC = 120°.
To learn more about parallelogram refer to:
brainly.com/question/24291122
#SPJ9
Answer:
87
Step-by-step explanation:
Range= biggest value-smallest value
R=100-13
R=87