Answer:
all real numbers
Step-by-step explanation:
As the graph goes up, it keeps going up and to the right. There is nothing telling us it will stop moving to the right at a certain point. It goes up much faster than it goes right, but it keeps going right and up forever. That makes the domain reach positive infinity. The same happens on the left side. As it goes down to the left, it keeps going left forever to negative infinity. That makes the domain all real numbers from negative infinity to positive infinity.
Domain: all real numbers
Answer:
A.47 m
Step-by-step explanation:
you a add 35 m east and 12 m west
X and y intercepts. So x intercept is where y=0 and y intercept is where x=0. Also positive or negative meaning where y>0 (positive) and where y<0 (negative). Use these hints to do it. If you can’t then just let me know...
so we have a table of values, with x,y coordinates, so let's use any two of those points to get the slope of the table and use the point-slope form to get its equation
![~\hspace{2.7em}\stackrel{\textit{let's use}}{\downarrow }\qquad \stackrel{\textit{and this}}{\downarrow }\\\begin{array}{|lr|r|r|r|r|}\cline{1-6}x&0&1&2&3&4\\y&-1&3&7&11&15\\\cline{1-6}\end{array}\\\\[-0.35em]\rule{34em}{0.25pt}\\\\(\stackrel{x_1}{1}~,~\stackrel{y_1}{3})\qquad(\stackrel{x_2}{4}~,~\stackrel{y_2}{15})](https://tex.z-dn.net/?f=~%5Chspace%7B2.7em%7D%5Cstackrel%7B%5Ctextit%7Blet%27s%20use%7D%7D%7B%5Cdownarrow%20%7D%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Band%20this%7D%7D%7B%5Cdownarrow%20%7D%5C%5C%5Cbegin%7Barray%7D%7B%7Clr%7Cr%7Cr%7Cr%7Cr%7C%7D%5Ccline%7B1-6%7Dx%260%261%262%263%264%5C%5Cy%26-1%263%267%2611%2615%5C%5C%5Ccline%7B1-6%7D%5Cend%7Barray%7D%5C%5C%5C%5C%5B-0.35em%5D%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%28%5Cstackrel%7Bx_1%7D%7B1%7D~%2C~%5Cstackrel%7By_1%7D%7B3%7D%29%5Cqquad%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B15%7D%29)
