Using the Fundamental Counting Theorem, it is found that:
The 2 people can arrange themselves in 40 ways.
<h3>What is the Fundamental Counting Theorem?</h3>
It is a theorem that states that if there are n things, each with
ways to be done, each thing independent of the other, the number of ways they can be done is:

With one people in the aisle and one in the normal seats, the parameters are:
n1 = 4, n2 = 7
With both in the aisle, the parameters is:
n1 = 4, n2 = 3
Hence the number of ways is:
N = 4 x 7 + 4 x 3 = 28 + 12 = 40.
More can be learned about the Fundamental Counting Theorem at brainly.com/question/24314866
#SPJ1
Answer:
3 classes
Step-by-step explanation:
The teacher can schedule 3 classes in a night because 4 1/2 divided by 1 1/2 is 3.
hope this helps!!
Answer:

Step-by-step explanation:
Given


Required
The area
This is calculated as:


Open brackst


Open bracket

Answer:
0.5
Step-by-step explanation:
Solution:-
- The sample mean before treatment, μ1 = 46
- The sample mean after treatment, μ2 = 48
- The sample standard deviation σ = √16 = 4
- For the independent samples T-test, Cohen's d is determined by calculating the mean difference between your two groups, and then dividing the result by the pooled standard deviation.
Cohen's d = 
- Where, the pooled standard deviation (sd_pooled) is calculated using the formula:

- Assuming that population standard deviation and sample standard deviation are same:
SD_1 = SD_2 = σ = 4
- Then,

- The cohen's d can now be evaliated:
Cohen's d = 