Answer:
For 3x^2+4x+4=0
Discriminant= = -32
The solutions are
(-b+√x)/2a= (-2+2√-2)/3
(-b-√x)/2a= (-2-2√-2)/3
For 3x^2+2x+4=0
Discriminant= -44
The solutions
(-b+√x)/2a= (-1+√-11)/3
(-b-√x)/2a= (-1-√-11)/3
For 9x^2-6x+2=0
Discriminant= -36
The solutions
(-b+√x)/2a= (1+√-1)/3
(-b-√x)/2a= (1-√-1)/3
Step-by-step explanation:
Formula for the discriminant = b²-4ac
let the discriminant be = x for the equations
The solution of the equations
= (-b+√x)/2a and = (-b-√x)/2a
For 3x^2+4x+4=0
Discriminant= 4²-4(3)(4)
Discriminant= 16-48
Discriminant= = -32
The solutions
(-b+√x)/2a =( -4+√-32)/6
(-b+√x)/2a= (-4 +4√-2)/6
(-b+√x)/2a= (-2+2√-2)/3
(-b-√x)/2a =( -4-√-32)/6
(-b-√x)/2a= (-4 -4√-2)/6
(-b-√x)/2a= (-2-2√-2)/3
For 3x^2+2x+4=0
Discriminant= 2²-4(3)(4)
Discriminant= 4-48
Discriminant= -44
The solutions
(-b+√x)/2a =( -2+√-44)/6
(-b+√x)/2a= (-2 +2√-11)/6
(-b+√x)/2a= (-1+√-11)/3
(-b-√x)/2a =( -2-√-44)/6
(-b-√x)/2a= (-2 -2√-11)/6
(-b-√x)/2a= (-1-√-11)/3
For 9x^2-6x+2=0
Discriminant= (-6)²-4(9)(2)
Discriminant= 36 -72
Discriminant= -36
The solutions
(-b+√x)/2a =( 6+√-36)/18
(-b+√x)/2a= (6 +6√-1)/18
(-b+√x)/2a= (1+√-1)/3
(-b-√x)/2a =( 6-√-36)/18
(-b-√x)/2a= (6 -6√-1)/18
(-b-√x)/2a= (1-√-1)/3
Answer:c between 32 and 37
Step-by-step explanation:
if you look at where the box starts and where it ends you can find the numbers that you need
Answer:
False
Step-by-step explanation:
Parallel lines never touch
Answer:
29.42 units
Step-by-step explanation:
<u>1) Find the perimeter around the semi-circle</u>
To do this, we find the circumference of the circle using the given diameter:
where d is the diameter
Plug in 6 as the diameter

Divide the circumference by 2

Therefore, the perimeter around the semi-circle is 3π units.
<u>2) Find the perimeter around the rest of the shape</u>
Although it's impossible to determine the lengths of the varied sides on the right side of the shape, we know that all of those <em>vertical</em> sides facing the right add up to 6. We also know that all of those <em>horizontal </em>sides facing up add up to 7. Please refer to the attached images.
Therefore, we add the following:
7+6+7
= 20
Therefore, the perimeter around that area of the shape is 20 units.
<u>3) Add the perimeter around the semi-circle and the perimeter around the rest of the shape</u>

Therefore, the perimeter of the shape is approximately 29.42 units.
I hope this helps!
What the heck do you mean??????????