It has been proven that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.
<h3>How to prove a Line Segment?</h3>
We know that in a triangle if one angle is 90 degrees, then the other angles have to be acute.
Let us take a line l and from point P as shown in the attached file, that is, not on line l, draw two line segments PN and PM. Let PN be perpendicular to line l and PM is drawn at some other angle.
In ΔPNM, ∠N = 90°
∠P + ∠N + ∠M = 180° (Angle sum property of a triangle)
∠P + ∠M = 90°
Clearly, ∠M is an acute angle.
Thus; ∠M < ∠N
PN < PM (The side opposite to the smaller angle is smaller)
Similarly, by drawing different line segments from P to l, it can be proved that PN is smaller in comparison to all of them. Therefore, it can be observed that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.
Read more about Line segment at; brainly.com/question/2437195
#SPJ1
From the figure shown, the interval is divided into 5 equal parts making each subinterval to be 0.2.
Part A:

The approximate the area of the region shown in the figure using the lower sums is given by:
![Area= [y(0.2)\times0.2]+[y(0.4)\times0.2]+[y(0.6)\times0.2]+[y(0.8)\times0.2] \\ +[y(1)\times0.2] \\ \\ =[\sqrt{1-(0.2)^2}\times0.2]+[\sqrt{1-(0.4)^2}\times0.2]+[\sqrt{1-(0.6)^2}\times0.2] \\ +[\sqrt{1-(0.8)^2}\times0.2]+[\sqrt{1-(1)^2}\times0.2] \\ \\ =(0.9798\times0.2)+(0.9165\times0.2)+(0.8\times0.2)+(0.6\times0.2)+(0\times0.2) \\ \\ =0.196+0.183+0.16+0.12=0.659](https://tex.z-dn.net/?f=Area%3D%20%5By%280.2%29%5Ctimes0.2%5D%2B%5By%280.4%29%5Ctimes0.2%5D%2B%5By%280.6%29%5Ctimes0.2%5D%2B%5By%280.8%29%5Ctimes0.2%5D%20%5C%5C%20%2B%5By%281%29%5Ctimes0.2%5D%20%5C%5C%20%20%5C%5C%20%3D%5B%5Csqrt%7B1-%280.2%29%5E2%7D%5Ctimes0.2%5D%2B%5B%5Csqrt%7B1-%280.4%29%5E2%7D%5Ctimes0.2%5D%2B%5B%5Csqrt%7B1-%280.6%29%5E2%7D%5Ctimes0.2%5D%20%5C%5C%20%2B%5B%5Csqrt%7B1-%280.8%29%5E2%7D%5Ctimes0.2%5D%2B%5B%5Csqrt%7B1-%281%29%5E2%7D%5Ctimes0.2%5D%20%5C%5C%20%20%5C%5C%20%3D%280.9798%5Ctimes0.2%29%2B%280.9165%5Ctimes0.2%29%2B%280.8%5Ctimes0.2%29%2B%280.6%5Ctimes0.2%29%2B%280%5Ctimes0.2%29%20%5C%5C%20%20%5C%5C%20%3D0.196%2B0.183%2B0.16%2B0.12%3D0.659)
Part B:
The approximate the area of the region shown in the figure using the lower sums is given by:
![Area= [y(0)\times0.2]+[y(0.2)\times0.2]+[y(0.4)\times0.2]+[y(0.6)\times0.2] \\ +[y(0.8)\times0.2] \\ \\ =[\sqrt{1-(0)^2}\times0.2]+[\sqrt{1-(0.2)^2}\times0.2]+[\sqrt{1-(0.4)^2}\times0.2] \\ +[\sqrt{1-(0.6)^2}\times0.2] +[\sqrt{1-(0.8)^2}\times0.2] \\ \\ =(1\times0.2)+(0.9798\times0.2)+(0.9165\times0.2)+(0.8\times0.2)+(0.6\times0.2) \\ \\ =0.2+0.196+0.183+0.16+0.12=0.859](https://tex.z-dn.net/?f=Area%3D%20%5By%280%29%5Ctimes0.2%5D%2B%5By%280.2%29%5Ctimes0.2%5D%2B%5By%280.4%29%5Ctimes0.2%5D%2B%5By%280.6%29%5Ctimes0.2%5D%20%5C%5C%20%2B%5By%280.8%29%5Ctimes0.2%5D%20%5C%5C%20%5C%5C%20%3D%5B%5Csqrt%7B1-%280%29%5E2%7D%5Ctimes0.2%5D%2B%5B%5Csqrt%7B1-%280.2%29%5E2%7D%5Ctimes0.2%5D%2B%5B%5Csqrt%7B1-%280.4%29%5E2%7D%5Ctimes0.2%5D%20%5C%5C%20%2B%5B%5Csqrt%7B1-%280.6%29%5E2%7D%5Ctimes0.2%5D%20%2B%5B%5Csqrt%7B1-%280.8%29%5E2%7D%5Ctimes0.2%5D%20%5C%5C%20%5C%5C%20%3D%281%5Ctimes0.2%29%2B%280.9798%5Ctimes0.2%29%2B%280.9165%5Ctimes0.2%29%2B%280.8%5Ctimes0.2%29%2B%280.6%5Ctimes0.2%29%20%5C%5C%20%5C%5C%20%3D0.2%2B0.196%2B0.183%2B0.16%2B0.12%3D0.859)
Part C:
The approximate area of the given region is given by
Answer:
22 ft²
Step-by-step explanation:
he needs 2 sides that are 2 x 3 feet
2 sides that are 3 x 1 and 2 sides that are 2 x 1
add these up to get 22 ft
Parameterize the surface (call it

) by

with

and

. Then the surface element is

The area of

is then given by the surface integral

B is the answer for this problem