Answer:
<u>720</u> possible PIN can be generated.
Explanation:
To calculate different number of orders of digits to create password and PIN, we calculate permutation.
Permutation is a term that means the number of methods or ways in which different numbers, alphabets, characters and objects can arranged or organized. To calculate the permutation following formula will be used:
nPr = n!/(n-r)!
there P is permutation, n is number of digits that need to be organize, r is the size of subset (Number of digits a password contains)
So in question we need to calculate
P=?
where
n= 10 (0-9 means total 10 digits)
r= 3 (PIN Consist of three digits)
So by using formula
10P3 = 10!/(10-3)!
=10!/7!
= 10x9x8x7!/7!
= 10x9x8
= 720
Answer:
-
= 1
= 1
Explanation:
Argon atom has atomic number 18. Then, it has 18 protons and 18 electrons.
To determine the quantum numbers you must do the electron configuration.
Aufbau's principle is a mnemonic rule to remember the rank of the orbitals in increasing order of energy.
The rank of energy is:
1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < 5d < 6p < 7s < 5f < 6d < 7d
You must fill the orbitals in order until you have 18 electrons:
- 1s² 2s² 2p⁶ 3s² 3p⁶ : 2 + 2 + 6 + 2 + 6 = 18 electrons.
The last electron is in the 3p orbital.
The quantum numbers associated with the 3p orbitals are:
= 1 (orbitals s correspond to
= 0, orbitals p correspond to
= 1, orbitals d, correspond to
= 2 , and orbitals f correspond to
= 3)
can be -1, 0, or 1 (from -
to +
)
- the fourth quantum number, the spin can be +1/2 or -1/2
Thus, the six possibilities for the last six electrons are:
- (3, 1, -1 +1/2)
- (3, 1, -1, -1/2)
- (3, 1, 0, +1/2)
- (3, 1, 0, -1/2)
- (3, 1, 1, +1/2)
- (3, 1, 1, -1/2)
Hence, the correct choice is:
-
= 1
= 1
Answer:
i think its new
Explanation:
if this is incorrect i apologize
I think it would be A. Ohm's law.
hope this helps.
Answer:
A server stores data for a client computer to access and use, and pretty self eplanitory for a client computer
Explanation: