<span>Problem 1: 2x > 4x - 6
2x < 6
x < 3
problem 2: -3r < 10 - r
-2r < 10
r > -5
problem 3: 5c - 4 > 8c + 2
3c < -6
c < -2</span>
The area of the arrow given in the figure is 610 square cm
<h3>Area of composite figure</h3>
The given figure is made up of rectangle and triangle. The area is expressed as:
Area = Area of rectangle + area of triangle
Substitute the given parameters
Area of the arrow = (15*20) + 0.5(31 * 20)
Area of the arrow = 300 + 310
Area of the arrow = 610 square cm
Hence the area of the arrow given in the figure is 610 square cm
Learn more on area of composite figures here: brainly.com/question/21135654
#SPJ1
Answer: first sawmill charges more for each meter of wood. And first mill has a cheaper price for 5-meter wooden beam.
Step-by-step explanation:
P=5+20x. The first sawmill charges $20. Then 110-20/5-0=18 Which means The second sawmill charges $18 for each meter of wood. Since 20>18 The first sawmill charges more for each meter of wood.
P = 5+20x
=5+20x•5
= 105
The first mill charges $105 For a 5 meter beam while the second beam charges $110
You're looking for 2/9 of 3/6 which means you are solving 3/6 ÷ 2/9.
When I was in sixth grade, my teacher always said "Dividing fractions, easy as pie. Flip the second and multiply." At the time, I thought I was too old for stuff like that, but now, I'm in ninth grade, and I haven't forgotten it. If you learn one thing, learn fractions, and learn them well because they never leave.
Anyway, 3/6 ÷ 2/9 becomes 3/6 × 9/2. Another thing from my teacher: "Multiplying fractions, no big problem. Top times top over bottom times bottom." So, 3 × 9 = 27 and 6 × 2 = 12. 27/12.
To make that a mixed number, do 27 ÷ 12. 12 goes in 2 times. This is the big number in your mixed number, your coefficient. Then you have 3 left over. (12 × 2 = 24. 27 - 24 = 3.) This is your numerator. And 12 is still your denominator.
Your answer is 2 3/12, which simplifies to 2 1/4.
Reflect over y-axis,reflect over the X axis ,rotate 180°
Option D is the correct option.
<em>Expla</em><em>nation</em><em>:</em>
<em>Let's </em><em>take</em><em> </em><em>point</em><em> </em><em>A</em><em> </em><em>which </em><em>is</em><em> </em><em>(</em><em>4</em><em>,</em><em>-</em><em>1</em><em>)</em>
<em>Reflect</em><em>ion</em><em> </em><em>over</em><em> </em><em>y-</em><em> </em><em>axis </em><em>will</em><em> </em><em>make</em><em> </em><em>this</em><em> </em><em>point</em><em> </em><em>(</em><em>4</em><em>,</em><em>1</em><em>)</em>
<em>Then</em><em>,</em><em> </em><em>reflect</em><em>ion</em><em> </em><em>over</em><em> </em><em>X </em><em>axis</em><em> </em><em>will</em><em> </em><em>make</em><em> </em><em>this</em><em> </em><em>point </em><em>(</em><em>4</em><em>,</em><em>-</em><em>1</em><em>)</em>
<em>After</em><em> </em><em>rota</em><em>tion</em><em> </em><em>of</em><em> </em><em>1</em><em>8</em><em>0</em><em> </em><em>degree</em><em> </em><em>we</em><em> </em><em>will</em><em> </em><em>get</em><em> </em><em>(</em><em>-</em><em>4</em><em>,</em><em>1</em><em>)</em><em> </em><em>.</em>
<em>Please</em><em> </em><em>see</em><em> the</em><em> attached</em><em> picture</em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>Hope</em><em> </em><em>it </em><em>helps</em><em>.</em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em><em>.</em>