The length of the curve
from x = 3 to x = 6 is 192 units
<h3>How to determine the length of the curve?</h3>
The curve is given as:
from x = 3 to x = 6
Start by differentiating the curve function

Evaluate

The length of the curve is calculated using:

This gives
![L =\int\limits^6_3 {\sqrt{1 + [x(9x^2 + 6)^\frac 12]^2}\ dx](https://tex.z-dn.net/?f=L%20%3D%5Cint%5Climits%5E6_3%20%7B%5Csqrt%7B1%20%2B%20%5Bx%289x%5E2%20%2B%206%29%5E%5Cfrac%2012%5D%5E2%7D%5C%20dx)
Expand

This gives

Express as a perfect square

Evaluate the exponent

Differentiate

Expand
L = (6³ + 6) - (3³ + 3)
Evaluate
L = 192
Hence, the length of the curve is 192 units
Read more about curve lengths at:
brainly.com/question/14015568
#SPJ1
The equivalent expression is 5^(4) * 3^(-10)
<h3>How to determine the equivalent expression?</h3>
The statement is given as:
five raised to the negative second power times three raised to the fifth power end quantity all raised to the negative second power
Rewrite properly as:
(5^-2 * 3^5)^-2
Expand the expression by multiplying the exponents
So, we have:
5^(-2 -2) * 3^(5 *-2)
Evaluate the products
5^(4) * 3^(-10)
Hence, the equivalent expression is 5^(4) * 3^(-10)
Read more about expression at
brainly.com/question/723406
#SPJ1
Answer:
11
Step-by-step explanation:
You would start by subtracting $30 from $151 which is $121.
Then you would divide this by 11 which 121÷11=11
So 11 test were bought.
r=9b_9a =r+9a/9=9b/9=b=r+9a/9