Answer:
top right
Step-by-step explanation:count how mnay it goes back each time
By algebra properties we find the following relationships between each pair of algebraic expressions:
- First equation: Case 4
- Second equation: Case 1
- Third equation: Case 2
- Fourth equation: Case 5
- Fifth equation: Case 3
<h3>How to determine pairs of equivalent equations</h3>
In this we must determine the equivalent algebraic expression related to given expressions, this can be done by applying algebra properties on equations from the second column until equivalent expression is found. Now we proceed to find for each case:
First equation
(7 - 2 · x) + (3 · x - 11)
(7 - 11) + (- 2 · x + 3 · x)
- 4 + (- 2 + 3) · x
- 4 + (1) · x
- 4 + (5 - 4) · x
- 4 - 4 · x + 5 · x
- 4 · (x + 1) + 5 · x → Case 4
Second equation
- 7 + 6 · x - 4 · x + 3
(6 · x - 4 · x) + (- 7 + 3)
(6 - 4) · x - 4
2 · x - 4
2 · (x - 2) → Case 1
Third equation
9 · x - 2 · (3 · x - 3)
9 · x - 6 · x + 6
3 · x + 6
(2 + 1) · x + (14 - 8)
[1 - (- 2)] · x + (14 - 8)
(x + 14) - (8 - 2 · x) → Case 2
Fourth equation
- 3 · x + 6 + 4 · x
x + 6
(5 - 4) · x + (7 - 1)
(7 + 5 · x) + (- 4 · x - 1) → Case 5
Fifth equation
- 2 · x + 9 + 5 · x + 6
3 · x + 15
3 · (x + 5) → Case 3
To learn more on algebraic equations: brainly.com/question/24875240
#SPJ1
The product (multiplication) of 5 and m squared (²) increased (addition) by the sum (addition) of the square (²) of m and 5.
(5m²) + (m² + 5)
Answer
1 + 32 + 243 + 1024 + .. + n5
Step-by-step explanation:
Answer:
When two or more separate ratios have the same value.