Answer:
c is the correct option
Step-by-step explanation:
from,
f'(x) = h >0 <u>f</u><u>(</u><u>x</u><u> </u><u>+</u><u> </u><u>h</u><u>)</u><u> </u><u>-</u><u> </u><u>f</u><u>(</u><u>x</u><u>)</u><u> </u>
h
f(x) = - √2x
f(x + h) = - √(2x + h)
f'(x) = h>0 <u>-</u><u>√(2x + h) - √2x</u>
h
rationalize the denominator
= h>0 <u>-</u><u>√</u><u>(</u><u>2</u><u>x</u><u> </u><u>+</u><u> </u><u>h</u><u>)</u><u> </u><u>+</u><u> </u><u>√</u><u>2</u><u>x</u><u> </u><u> </u><u>(</u><u>-</u><u>√</u><u>(</u><u>2</u><u>x</u><u> </u><u>+</u><u> </u><u>h</u><u>)</u><u> </u><u>-</u><u> </u><u>√</u><u>2</u><u>x</u><u>)</u>
h (-√(2x + h) - √2x)
= h>0 <u>4</u><u>x</u><u> </u><u>+</u><u> </u><u>2</u><u>h</u><u> </u><u>-</u><u> </u><u>4</u><u>x</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
h(-√(2x + h) -√2x)
= h>0 <u>2</u><u>h</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
h(-√(2x+h) - √2x)
= h>0 <u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>2</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
-√(2x+h) - √2x
GCF(13; 52) = 13
13 = 13 · 1
52 = 13 · 4
13 + 52 = 13 · 1 + 13 ·4 = 13·(1 + 4)
Used distributive property: a(b + c) = ab + ac
Answer:
y =
x + 6 or y =
x - 0.375
Step-by-step explanation:
For 2 lines to be perpendicular, their slopes must be <u>negative reciprocals</u>. In order to find the perpendicular of y - 4x - 6 = 0:
SLOPE INTERCEPT FORM: y = 4x + 6
SLOPE OF LINE A: m=4
SLOPE OF LINE B (the one you are looking for): m=
Since I don't know if you meant that they intercept on the x or y axis I will do both.
<u>y-axis</u>
y-6=
(x-0)
y =
x+6
<u>x-axis</u>
y-0=
(x-1.5)
y=
x-0.375
Answer:
The system will be found to be inconsistent or dependent.
Step-by-step explanation:
The matrix A will have no inverse for two different reasons:
- The system is inconsistent
- The system is dependent
In the latter case, the Gauss-Jordan method will find a set of parametric equations for a solution. In the former case, there is no solution.
The outcome will depend on the reason why there is no inverse.