1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ehidna [41]
3 years ago
11

What is the area of the sector?

Mathematics
1 answer:
xeze [42]3 years ago
8 0

Area of the sector is 981.3 cm²

Step-by-step explanation:

  • Step 1: Find the area of the sector where radius = 50 cm and central angle = 45°

Area of the sector = πr² (C/360), where r is radius and C is the central angle

⇒ Area = 3.14 × 50² × (45/360)

            = 3.14 × 2500 × 1/8

            = 7850/8 = 981.3 cm²

You might be interested in
Find the length of the unknown side round your answer to the nearest whole number
lions [1.4K]

Your answer is B. I can explain, but I know some people just need it fast. lol

4 0
2 years ago
Help me to solve this question pleaseee
Alika [10]
Cant see the attachment.<span />
6 0
3 years ago
Solve the system <br> 2x+2y+z=-2 <br> -x-2y+2z=-5<br> 2x+4y+z=0
drek231 [11]

The values of (x,y,z) are (3,-1,-2) , if the given are equations 2x+2y+z=- 2,-x-2y+2z=-5 and 2x+4y+z=0.

Step-by-step explanation:

The given is,

                          2x+2y+z=- 2.......................................(1)

                         -x-2y+2z=-5......................................(2)

                            2x+4y+z=0.........................................(3)

Step:1

           Equation (2) is multiplied by -1            ( Eqn(2) × -1 )

                                         x+2y-2z=5.............................(4)

          Subtract the equation (1) and (4)

                                        2x+2y+z=- 2

                                         x+2y-2z=5

                 ( - )

           (2x-x)+(2y-2y)+(z+2z)=(-2-5)

                                                  x+3z=-7......................(5)

Step:2

          Equation (2) is multiplied by -2                 ( Eqn(2) × -2)

                                        2x+4y-4z=10........................(6)

         Subtract equation (6) and (3),                  

                                        2x+4y-4z=10

                                         2x+4y+z=0

                   ( - )

       (2x-2x)+(4y-4y)+(-4z-z)= (10-0)

                                                     -5z=10

                                                         z = - \frac{10}{5}

                                                         z = -2

         From the equation (5),

                                                  x+3z=-7  

                                          x+(3)(-2)=-7

                                                           x = -7+6

                                                            x = -1

         From equation (1),

                                            2x+2y+z=- 2

          Substitute x and z values,

                               (2)(-1)+2y+(-2)=-2

                                                     2y - 4=2

                                                           2y=4-2

                                                           2y=2

                                                            y=\frac{2}{2}

                                                             y = 1

Step:3

                Check for solution,

                                  -x-2y+2z=-5

                Substitute x,y and z values,

               -(-1)-(2)(1)+(2)(-2)=-5

                                         1-2-4=-5

                                                    -5 = -5

Result:

              The values of (x,y,z) are (3,-1,-2) , if the given are equations 2x+2y+z=- 2,-x-2y+2z=-5 and 2x+4y+z=0.

8 0
3 years ago
Solve for c. a(b − c)=d
Lilit [14]
A(b - c) = d
ab - ac = d
-ac = -ab + d
ac = ab - d
ac/a = (ab - d)/a
c = (ab - d)/a

Your answer will be A. c = (ab - d)/a. Hope this helps!
6 0
3 years ago
Read 2 more answers
10. Given that the total distance travelled is 4 km and that the initial aceleration is 4 m/s², find:a) the value of V.b) the va
andrezito [222]

The initial deceleration is 4 m/s^2, so this means that considering the first line segment, \frac{V-100}{T}=-4 \implies V=100-4T.

The total distance traveled is 4 km, which is equal to 4000 meters. This is equal to the area under the graph, so 400T-\frac{1}{2}(100-V)(5T)=4000.

400(100-4T)-\frac{1}{2}(4T)(5T)=4000\\\\40000-1600T-10T^2=4000\\\\10T^2 +1600T-36000=0\\\\T^2 +160T-3600=0\\\\(T+180)(T-20)=0\\\\T=20 (T > 0)\\\\\therefore V=100-4(20)=20

6 0
1 year ago
Other questions:
  • HELP FAST
    13·1 answer
  • For the series 16, 24, 36, 54,... find S7.
    6·1 answer
  • What is the sum of 16.87 + (–98.35)? –115.22 –81.48 81.48 115.22
    8·2 answers
  • Given that rectangle MNOP - Rectangle STUV what's the length of TU<br><br>Please explain. Thank you.
    5·1 answer
  • Can someone help me on this really easy 6th grade math?
    12·1 answer
  • 16 inches to 2 feet. Translate the ratio into a fraction in simplest form
    7·1 answer
  • What is the absolute value<br> 3|x+6|-7=20
    5·1 answer
  • Which of the following sets of numbers could not represent the three sides of a
    8·1 answer
  • 1.5 units
    12·1 answer
  • Does this graph represent a function? Yes, no
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!