16 ml. If you set 3/45 = x/240 where x is the amount he needs for 240ml^2, then cross multiply and divide to find x you get 16
We know that :



Using above ideas we can solve the Problem :
⇒ 
⇒ ![ln(x - 3) - ln(x + 3)^\frac{3}{8} = ln[\frac{(x - 3)}{(x + 3)^\frac{3}{8}}]](https://tex.z-dn.net/?f=ln%28x%20-%203%29%20-%20ln%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B8%7D%20%3D%20ln%5B%5Cfrac%7B%28x%20-%203%29%7D%7B%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B8%7D%7D%5D)
⇒ ![4ln[\frac{(x - 3)}{(x + 3)^\frac{3}{8}}] = ln[\frac{(x - 3)}{(x + 3)^\frac{3}{8}}]^4 = ln[\frac{(x - 3)^4}{(x + 3)^\frac{3}{2}}]](https://tex.z-dn.net/?f=4ln%5B%5Cfrac%7B%28x%20-%203%29%7D%7B%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B8%7D%7D%5D%20%3D%20ln%5B%5Cfrac%7B%28x%20-%203%29%7D%7B%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B8%7D%7D%5D%5E4%20%3D%20ln%5B%5Cfrac%7B%28x%20-%203%29%5E4%7D%7B%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B2%7D%7D%5D)
⇒ ![\frac{1}{3}lnx + ln[\frac{(x - 3)^4}{(x + 3)^\frac{3}{2}}] = ln(x)^\frac{1}{3} + ln[\frac{(x - 3)^4}{(x + 3)^\frac{3}{2}}] = ln[\frac{\sqrt[3]{x}(x - 3)^4}{\sqrt{(x + 3)^{3}}}]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B3%7Dlnx%20%2B%20ln%5B%5Cfrac%7B%28x%20-%203%29%5E4%7D%7B%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B2%7D%7D%5D%20%3D%20ln%28x%29%5E%5Cfrac%7B1%7D%7B3%7D%20%2B%20ln%5B%5Cfrac%7B%28x%20-%203%29%5E4%7D%7B%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B2%7D%7D%5D%20%3D%20ln%5B%5Cfrac%7B%5Csqrt%5B3%5D%7Bx%7D%28x%20-%203%29%5E4%7D%7B%5Csqrt%7B%28x%20%2B%203%29%5E%7B3%7D%7D%7D%5D)
Option 3 is the Answer
Are you looking for the number of cans you and your friend each collected? If yes, here is the solution:
Let x be the number of cans.
4x + 5x = 180
9x = 180
9x/9 = 180/9 (divide both sides of the equation by 9)
x = 20
Now, substitute the values:
4(20) + 5(20) = 180
80 + 100 = 180
180 = 180
Therefore, you collected 80 cans and your friend collected 100 cans.