1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BaLLatris [955]
3 years ago
10

naomi's class gets to keep 20% of the money they earn from selling calendars. this class sold 600 calendars. last year they sold

650 calendars. in which year year did they earn more money

Mathematics
1 answer:
worty [1.4K]3 years ago
3 0

Answer:

They earned more money "last year" than "this year". 20% of 600 is 120, 20% of 650 is 130, which is larger than 120. 130 > 120. Hope this Helped!


You might be interested in
What is the radius of the circle?​
Whitepunk [10]

Answer:

7 units

Step-by-step explanation:

Hello!

The radius of a circle is the distance from the center of the circle to it's outer edge.

The radius of this circle is 7 units, as the distance from the center to the outer edge is 7.

5 0
1 year ago
Read 2 more answers
Pleaseee help, question what is the sum of 4x^2 + 2x - 5 and 7x^2 - 5x + 2
Nataliya [291]

Simplification of polynomials.

Polynomials <em>are</em> mathematical expressions made up of many terms.<em>To</em> simplify a polynomial <em>the most, you must collect all</em><em> </em>like terms <em>and rearrange them from highest to lowest power.</em>

<h3>4x² + 2x -5 + 7x² - 5x+2</h3><h3>4x² + 2x -3 + 7x² - 5x+2</h3><h3>11x² + 2x - 3 - 5x</h3><h3>11x² - 3x - 3 ====> Option "A"</h3>
6 0
1 year ago
Read 2 more answers
What is the approximate measure of the length of the tennis court, x?
Romashka-Z-Leto [24]

Answer:

78.0 ft

Step-by-step explanation:

pythagoras theorem =

a² + b² = c²

a² + 36² = 85.9²

a² + 1296 = 7378.81

a² = 7378.81 - 1296

a² = 6082.81

a = √6082.81

a = 77.992....

so, a (rounded) = 78 ft :)

3 0
3 years ago
Read 2 more answers
Account is overdrawn by $50. You write a check for $20. What is the balance in your account?
Ad libitum [116K]

Answer:

30

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
Other questions:
  • Prove identity: Sec^6x-tan^6x= 1+3tan^2xsec^2x
    12·1 answer
  • What is the value of the discriminant for the quadratic equation 0 = x + 2 + x2?
    13·2 answers
  • What is the difference between -25 and -12
    9·2 answers
  • 7 big ones cost 280,000 how many could u buy with 120,000
    8·2 answers
  • Find the values of x and y 0.50x+0.20y=3.90
    5·2 answers
  • A. Choose a pair of fractions from the list and show
    9·1 answer
  • Javier designs leather shoes at his workshop. He charges $45 for women's shoes and $50 for men's shoes. He needs to make $2,500
    11·1 answer
  • Kathy's internet company charges a connection fee of 0.21 cents for each call and 0.06 cents per minute for each call she made f
    11·1 answer
  • will a 13 inch rusty metal bar fit into a box (rectangular prism) with dimensions 9 inches by 8 inches by 3 inches?
    6·2 answers
  • Please answer the question
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!