Answer:
7 units
Step-by-step explanation:
Hello!
The radius of a circle is the distance from the center of the circle to it's outer edge.
The radius of this circle is 7 units, as the distance from the center to the outer edge is 7.
Simplification of polynomials.
Polynomials <em>are</em> mathematical expressions made up of many terms.<em>To</em> simplify a polynomial <em>the most, you must collect all</em><em> </em>like terms <em>and rearrange them from highest to lowest power.</em>
<h3>4x² + 2x -5 + 7x² - 5x+2</h3><h3>4x² + 2x -3 + 7x² - 5x+2</h3><h3>11x² + 2x - 3 - 5x</h3><h3>11x² - 3x - 3 ====> Option "A"</h3>
Answer:
78.0 ft
Step-by-step explanation:
pythagoras theorem =
a² + b² = c²
a² + 36² = 85.9²
a² + 1296 = 7378.81
a² = 7378.81 - 1296
a² = 6082.81
a = √6082.81
a = 77.992....
so, a (rounded) = 78 ft :)
Answer:

General Formulas and Concepts:
<u>Algebra I</u>
- Exponential Rule [Rewrite]:

<u>Calculus</u>
Limits
- Right-Side Limit:

Limit Rule [Variable Direct Substitution]: 
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integrals
Integration Constant C
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Multiplied Constant]: 
U-Substitution
U-Solve
Improper Integrals
Exponential Integral Function: 
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Integrate Pt. 1</u>
- [Integral] Rewrite [Exponential Rule - Rewrite]:

- [Integral] Rewrite [Improper Integral]:

<u>Step 3: Integrate Pt. 2</u>
<em>Identify variables for u-substitution.</em>
- Set:

- Differentiate [Basic Power Rule]:

- [Derivative] Rewrite:

<em>Rewrite u-substitution to format u-solve.</em>
- Rewrite <em>du</em>:

<u>Step 4: Integrate Pt. 3</u>
- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] Substitute in variables:

- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] Substitute [Exponential Integral Function]:
![\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7B%5Cfrac%7B1%7D%7Bxe%5E%7Bx%5E2%7D%7D%20%5C%2C%20dx%20%3D%20%5Clim_%7Ba%20%5Cto%200%5E%2B%7D%20%5Cfrac%7B1%7D%7B2%7D%5BEi%28u%29%5D%20%5Cbigg%7C%20%5Climits%5E1_a)
- Back-Substitute:
![\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7B%5Cfrac%7B1%7D%7Bxe%5E%7Bx%5E2%7D%7D%20%5C%2C%20dx%20%3D%20%5Clim_%7Ba%20%5Cto%200%5E%2B%7D%20%5Cfrac%7B1%7D%7B2%7D%5BEi%28-x%5E2%29%5D%20%5Cbigg%7C%20%5Climits%5E1_a)
- Evaluate [Integration Rule - FTC 1]:
![\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7B%5Cfrac%7B1%7D%7Bxe%5E%7Bx%5E2%7D%7D%20%5C%2C%20dx%20%3D%20%5Clim_%7Ba%20%5Cto%200%5E%2B%7D%20%5Cfrac%7B1%7D%7B2%7D%5BEi%28-1%29%20-%20Ei%28a%29%5D)
- Simplify:

- Evaluate limit [Limit Rule - Variable Direct Substitution]:

∴
diverges.
Topic: Multivariable Calculus