If the triangle has a angle of 90°, you can solved this exercise by applying the Pythagorean Theorem, which is:
h²=a²+b²
h=√(a²+b²)
h: It is the hypotenuse
(The opposite side of the right angle and the longest side of the triangle).
a and b: They are the legs
(The sides that form the right angle).
The result of h=√(a²+b²), should be 17.1 (The longest side given in the problem). So, let's substitute the values of the legs into the Pythagorean equation:
h=√(a²+b²)
h=√((9.2)²+(14.5)²)
h=17.1
Therefore, the answer is:
Yes, the given measures can be the lengths of the sides of a triangle.
Answer:
C
Step-by-step explanation:
Here, we want to know if the table represents a proportional relationship
Looking at the table, if we multiply the x-terms by -4, we get the y-terms
So the answer here is that Yes, because all the ratios of y to x are equal to -4
The solutions fo the inequality are all the points (x, y) that meet these 3 conditions.
- x ≠ 0
- y ≠ 0
- Sign(x) =sign(y)
<h3>
Which points are solutions of the inequality?</h3>
We want to find points of the form (x, y) that are solutions of the inequality:
x*y > 0
Clearly x and y must be different than zero.
So, for example if x = -1, y can be any negative number, for example y= -3
x*y > 0
(-1)*(-3) > 0
3 > 0
This is true.
Now if x = 1, y must be positive. LEt's take y = 103, then:
x*y > 0
1*103 > 0
103 > 0
Then we have 3 conditions:
- x ≠ 0
- y ≠ 0
- Sign(x) =sign(y)
The solutions fo the inequality are all the points (x, y) that meet these 3 conditions.
If you want to learn more about inequalities:
brainly.com/question/25275758
#SPJ1
I’m also stuck on this question