Answer:30
Step-by-step explanation: act like both of the triangles are there, that is a rectangle 6 times 10 equals 60. 60 divided by 2 is 30
(a) Average time to get to school
Average time (minutes) = Summation of the two means = mean time to walk to bus stop + mean time for the bust to get to school = 8+20 = 28 minutes
(b) Standard deviation of the whole trip to school
Standard deviation for the whole trip = Sqrt (Summation of variances)
Variance = Standard deviation ^2
Therefore,
Standard deviation for the whole trip = Sqrt (2^2+4^2) = Sqrt (20) = 4.47 minutes
(c) Probability that it will take more than 30 minutes to get to school
P(x>30) = 1-P(x=30)
Z(x=30) = (mean-30)/SD = (28-30)/4.47 ≈ -0.45
Now, P(x=30) = P(Z=-0.45) = 0.3264
Therefore,
P(X>30) = 1-P(X=30) = 1-0.3264 = 0.6736 = 67.36%
With actual average time to walk to the bus stop being 10 minutes;
(d) Average time to get to school
Actual average time to get to school = 10+20 = 30 minutes
(e) Standard deviation to get to school
Actual standard deviation = Previous standard deviation = 4.47 minutes. This is due to the fact that there are no changes with individual standard deviations.
(f) Probability that it will take more than 30 minutes to get to school
Z(x=30) = (mean - 30)/Sd = (30-30)/4.47 = 0/4.47 = 0
From Z table, P(x=30) = 0.5
And therefore, P(x>30) = 1- P(X=30) = 1- P(Z=0.0) = 1-0.5 = 0.5 = 50%

x = 2
<em>right</em><em> </em><em>option</em><em> </em><em>is</em><em> </em>(E).
Step-by-step explanation:
f(x) = x³ - 3x² + 12 in interval [-2, 4]
{taking f'(x) by doing derivative of f(x)}
f'(x) = 3x² - 6x
.•. f'(x) = 0
0 = 3x² - 6x
0 = 3x(x - 2)
0 = x - 2
x = 2
Answer:
what is the question and the choices and ill answer this
Step-by-step explanation:
Answer:
I'm assuming you have 4 options, and if so, the answer is A.
Step-by-step explanation:
Rounding 36.6 off to 37 will make it easier to estimate the quotient when dividing by 5. For example, I can easily come up with a solution in my head when dividing 37 to 5 but it's harder for me to come up with a solution to 36.6.