te vertex forms two triangles with equal areas. He starts by assigning coordinates as given.
A right triangle is graphed on a coordinate plane. The horizontal x-axis and y-axis are solid, and the grid is hidden. The vertices are labeled as M, K, and L. The vertex labeled as M lies on begin ordered pair 0 comma 0 end ordered pair. The vertex labeled as K lies on begin ordered pair 0 comma 2 b end ordered pair. The vertex labeled as L lies on begin ordered pair 2a comma 0 end ordered pair. A bisector is drawn from point M to the line KL. The intersection point on line KL is labeled as N.
Enter the answers to complete the coordinate proof.
N is the midpoint of KL¯¯¯¯¯KL¯ . Therefore, the coordinates of N are (a,
).
To find the area of △KNM△KNM , the length of the base MK is 2b, and the length of the height is a. So an expression for the area of △KNM△KNM is
.
To find the area of △MNL△MNL , the length of the base ML is
, and the length of the height is
. So an expression for the area of △MNL△MNL is ab.
Comparing the expressions for the areas shows that the areas of the triangles are equal.