Answer:
.......C........
Step-by-step explanation:
......
2 because if 1/2 of 8 is 4 and 1/4 of 8 is = to 1/2 of 4, then 1/4 of 8 must be 2.
Answer:
The options are not shown, so i will answer in a general way.
Let's define the variables:
h = number of hats
m = number of mugs.
We know that a total of 1000 items were ordered, then:
h + m = 1000
We also know that we have 3 times more mugs than hats, this can be written as:
m = 3*h
Now we have the system of equations:
h + m = 1000
m = 3*h
To solve these, we usually start by isolating one of the variables in one equation and then replace that in the other equation, but in this case, we already have m isolated in the second equation, then we can replace that in the first equation to get:
h + m = 1000
h + (3*h) = 1000
Now we can solve this equation for h, and find the number of hats ordered.
4*h = 1000
h = 1000/4 = 250
There were 250 hats ordered.
Answer:
The most appropriate value of the critical value is 2.289.
Step-by-step explanation:
We are given that a researcher takes a random sample of 41 bulbs and determines that the mean consumption is 1.3 watts per hour with a standard deviation of 0.7.
We have to find that when constructing a 97% confidence interval, which would be the most appropriate value of the critical value.
Firstly, as we know that the test statistics that would be used here is t-test statistics because we don't know about the population standard deviation.
So, for finding the critical value we will look for t table at (41 - 1 = 40) degrees of freedom at the level of significance will be
.
Now, as we can see that in the t table the critical values for P = 1.5% are not given, so we will interpolate between P = 2.5% and P = 1%, i.e;

So, the critical value at a 1.5% significance level is 2.289.
the answer is k=4.6. hope this helps