Answer:
the space (usually measured in degrees) between two intersecting lines or surfaces at or close to the point where they meet.
ednocrkdlwmqcw e9rbeuopgjkmr qoejffwkf ,rwfrwfjr nmwrfHELP ME iuehf[eoiffkjkmfeiufkwjmfwufuStep-by-step explanation:
We don’t know the value of the shorter side, so we will categorize it as x. Side 2 is just 4 feet longer than x, so we would add 4 on to it. Side 3 has double the x, so we would multiply it be 2 for 2x, and subtract the 4 feet from it.
Side 1: x
Side 2: x + 4
Side 3: 2x - 4
If the perimeter is 64 feet, then all of the sides have to add up to it. Therefore, first we add all of the side lengths up:
x + x + 4 + 2x - 4 = 4x.
Now we put 4x, the amount of all these sides added up, equal to the perimeter of 64.
4x = 64. Divide both sides by 4 to get x by itself.
x = 16.
Now that we know x is 16, we will substitute it in for all the side lengths’ equations.
We know that Side 1 was just x, so that will be 16. Since Side 2 was 4 more than x, we’d do 16 + 4 = 20. We substitute 16 in for x in Side 3’s equation: 2(16) - 4 = 32 - 4 = 28.
Therefore, the final lengths of all the sides are:
Side 1: 16
Side 2: 20
Side 3: 28
Answer:
a) (i)
, (ii)
, (iii)
, (iv)
, (v)
, (vi)
, (vii)
, (viii)
; b)
; c) The equation of the tangent line to curve at P (7, -2) is
.
Step-by-step explanation:
a) The slope of the secant line PQ is represented by the following definition of slope:

(i)
:




(ii) 




(iii) 




(iv) 




(v) 




(vi) 




(vii) 




(viii) 




b) The slope at P (7,-2) can be estimated by using the following average:



The slope of the tangent line to the curve at P(7, -2) is 2.
c) The equation of the tangent line is a first-order polynomial with the following characteristics:

Where:
- Independent variable.
- Depedent variable.
- Slope.
- x-Intercept.
The slope was found in point (b) (m = 2). Besides, the point of tangency (7,-2) is known and value of x-Intercept can be obtained after clearing the respective variable:



The equation of the tangent line to curve at P (7, -2) is
.