Answer:
x=13.851(repeating 851)
Step-by-step explanation:
The law of sines formula allows to set up a proportion of opposite side/angles ( you're taking the sine of an angle and its opposite side).
When we divide side a by the sine of angle A
it is equal to side b divided by the sine of angle B,
and also equal to side c divided by the sine of angle C
11/27 = x/34
27x = 11*34
27x = 374
x= 13.851.......
11/27 = 0.407......
13.852/34 = 0.407.......
<h3>Answer:</h3>
- no
- yes
- no
- yes
- yes
<h3>Explanation:</h3>
The distributive property is useful both for collecting terms and for eliminating parentheses.
1. 3x +1/4 -x +1 1/2 = x(3 -1) +(1/4 +1 2/4) = 2x +1 3/4 ≠ 4x +1 3/4 (no)
2. 2(3x+1) = 2·3x + 2·1 = 6x +2 = 2 +6x (yes)
3. 3(x+1) -(1+x) = (x+1)(3 -1) = 2(x+1) = 2x +2 ≠ 2x +3 (no)
4. 4(x+1)-x-4 = 4x +4 -x -4 = x(4-1) +(4-4) = 3x +0 = 3x (yes)
5. 5.5 +2.1x +3.8x -4.1 = x(2.1 +3.8) +(5.5 -4.1) = 5.9x +1.4 = 1.4 +5.9x (yes)
So, if we define a straight line<span> to be the one that a particle takes when no forces are on it, or better yet that an object with no forces on it takes the quickest, and hence</span>shortest<span> route </span>between two points<span>, then walla, the </span>shortest distance between two points<span> is the geodesic; in Euclidean space, a </span>straight line<span> as</span>
By definition of tangent,
tan(<em>x</em>) = sin(<em>x</em>) / cos(<em>x</em>)
so if tan(<em>x</em>) < 0, and we're given cos(<em>x</em>) = -1/4 < 0, then it follows that sin(<em>x</em>) > 0.
Recall the Pythagorean identity:
cos²(<em>x</em>) + sin²(<em>x</em>) = 1 → sin(<em>x</em>) = + √(1 - cos²(<em>x</em>))
Then
sin(<em>x</em>) = √(1 - (-1/4)²) = √(15/16) = √(15)/4
Recall the double angle identity:
sin(2<em>x</em>) = 2 sin(<em>x</em>) cos(<em>x</em>)
Then
sin(2<em>x</em>) = 2 • √(15)/4 • (-1/4) = -2√(15)/16 = -√(15)/8