The answer is C. 2.8!!!!!!!!
Answer:
B) The sum of the squared residuals
Step-by-step explanation:
Least Square Regression Line is drawn through a bivariate data(Data in two variables) plotted on a graph to explain the relation between the explanatory variable(x) and the response variable(y).
Not all the points will lie on the Least Square Regression Line in all cases. Some points will be above line and some points will be below the line. The vertical distance between the points and the line is known as residual. Since, some points are above the line and some are below, the sum of residuals is always zero for a Least Square Regression Line.
Since, we want to minimize the overall error(residual) so that our line is as close to the points as possible, considering the sum of residuals wont be helpful as it will always be zero. So we square the residuals first and them sum them. This always gives a positive value. The Least Square Regression Line minimizes this sum of residuals and the result is a line of Best Fit for the bivariate data.
Therefore, option B gives the correct answer.
Answer: what what! Confused
Step-by-step explanation:
For the given situation we have a total of 259,459,200 permutations.
<h3>
How many permutations are?</h3>
First, how we know that it is a permutation?
Because the order matters, we aren't only selecting 8 out of the 15 people, but these 8 selected also have an order (is not the same thing to finish the race first than fourth, for example).
Then we need to find the number of permutations, to do it, we need to find the numbers of options for each of the 8 positions.
- For the first position there are 15 options.
- For the second position ther are 14 options (one runner already finished).
- For the third position there are 13 options.
- And so on.
Then the total number of permutations (product between the numbers of options) is:
P = 15*14*13*12*11*10*9*8 = 259,459,200
If you want to learn more about permutations:
brainly.com/question/11732255
#SPJ1
Answer:
256π/3 cm³
Step-by-step explanation:
d = 2r => r = d/2 = 4cm/2 = 2 cm
V(sphere) = 4π·r³/3
= 4π·64/3 cm³
= 256π/3 cm³