Answer: A. 12.5
<u>Step-by-step explanation:</u>

He equation of a parabola is x = -4(y-1)^2. What is the equation of the directrix?
<span>You may write the equation as </span>
<span>(y-1)^2 = (1) (x+4) </span>
<span>(y-k)^2 = 4p(x-h), where (h,k) is the vertex </span>
<span>4p=1 </span>
<span>p=1/4 </span>
<span>k=1 </span>
<span>h=-4 </span>
<span>The directrix is a vertical line x= h-p </span>
<span>x = -4-1/4 </span>
<span>x=-17/4 </span>
<span>------------------------------- </span>
<span>What is the focal length of the parabola with equation y - 4 = 1/8x^2 </span>
<span>(x-0)^2 = 8(y-4) </span>
<span>The vertex is (0,4) </span>
<span>4p=8 </span>
<span>p=2 (focal length) -- distance between vertex and the focus </span>
<span>------------------------------- </span>
<span>(y-0)^2 = (4/3) (x-7) </span>
<span>vertex = (7,0) </span>
<span>4p=4/3 </span>
<span>p=1/3 </span>
<span>focus : (h+p,k) </span>
<span>(7+1/3, 0)</span>
In order to answer the above question, you should know the general rule to solve these questions.
The general rule states that there are 2ⁿ subsets of a set with n number of elements and we can use the logarithmic function to get the required number of bits.
That is:
log₂(2ⁿ) = n number of <span>bits
</span>
a). <span>What is the minimum number of bits required to store each binary string of length 50?
</span>
Answer: In this situation, we have n = 50. Therefore, 2⁵⁰ binary strings of length 50 are there and so it would require:
log₂(2⁵⁰) <span>= 50 bits.
b). </span><span>what is the minimum number of bits required to store each number with 9 base of ten digits?
</span>
Answer: In this situation, we have n = 50. Therefore, 10⁹ numbers with 9 base ten digits are there and so it would require:
log2(109)= 29.89
<span> = 30 bits. (rounded to the nearest whole #)
c). </span><span>what is the minimum number of bits required to store each length 10 fixed-density binary string with 4 ones?
</span>
Answer: There is (10,4) length 10 fixed density binary strings with 4 ones and
so it would require:
log₂(10,4)=log₂(210) = 7.7
= 8 bits. (rounded to the nearest whole #)
Answer:
yeeeeeeeeeeeet
Step-by-step explanation:
thx for points
3 meters is the same thing as 12/4 meters so divide 12/4 by 3/4 to get 4.