Answer:
The answer is below
Step-by-step explanation:
1)
mean (μ) = 12, SD(σ) = 2.3, sample size (n) = 65
Given that the confidence level (c) = 90% = 0.9
α = 1 - c = 0.1
α/2 = 0.05
The z score of α/2 is the same as the z score of 0.45 (0.5 - 0.05) which is equal to 1.65
The margin of error (E) is given as:

The confidence interval = μ ± E = 12 ± 0.47 = (11.53, 12.47)
2)
mean (μ) = 23, SD(σ) = 12, sample size (n) = 45
Given that the confidence level (c) = 88% = 0.88
α = 1 - c = 0.12
α/2 = 0.06
The z score of α/2 is the same as the z score of 0.44 (0.5 - 0.06) which is equal to 1.56
The margin of error (E) is given as:

The confidence interval = μ ± E = 23 ± 2.8 = (22.2, 25.8)
Can you please translate this so I can answer your question
Answer:
When we have something like:
![\sqrt[n]{x}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%7D)
It is called the n-th root of x.
Where x is called the radicand, and n is called the index.
Then the term:
![\sqrt[4]{16}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B16%7D)
is called the fourth root of 16.
And in this case, we can see that the index is 4, and the radicand is 16.
At the end, we have the question: what is the 4th root of 16?
this is:
![\sqrt[4]{16} = \sqrt[4]{4*4} = \sqrt[4]{2*2*2*2} = 2](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B16%7D%20%3D%20%5Csqrt%5B4%5D%7B4%2A4%7D%20%20%3D%20%5Csqrt%5B4%5D%7B2%2A2%2A2%2A2%7D%20%3D%202)
The 4th root of 16 is equal to 2.
Answer:
x = 
Step-by-step explanation:
Note that
= 14
Expressed in exponent form as
= 14, thus
x = 