<u>Answer:</u>
Height of cables = 23.75 meters
<u>Step-by-step explanation:</u>
We are given that the road is suspended from twin towers whose cables are parabolic in shape.
For this situation, imagine a graph where the x-axis represent the road surface and the point (0,0) represents the point that is on the road surface midway between the two towers.
Then draw a parabola having vertex at (0,0) and curving upwards on either side of the vertex at a distance of
or
, and y at 95.
We know that the equation of a parabola is in the form
and here it passes through the point
.




So new equation for parabola would be
.
Now we have to find the height
of the cable when
.

y = 23.75 meters
Idk about number 4 but I think the other ones are correct
Answer:
24.475
Step-by-step explanation:
1st Divide: 43.9÷4=10.975
2nd Add 13.5: 10.975+13.5=24.475
--------------------------------------------------------------------
Hope this helps you out :)
Answer:
$9327
Step-by-step explanation:
Apparently, the cost function is supposed to be ...
C(x) = 0.4x^2 -112x +17167
This can be rewritten to vertex form as ...
C(x) = 0.4(x^2 -280) +17167
C(x) = 0.4(x -140)^2 +17167 -0.4(19600)
C(x) = 0.4(x -140)^2 +9327
The vertex of the cost function is ...
(x, C(x)) = (140, 9327)
The minimum unit cost is $9327.
_____
<em>Comment on the question</em>
You found the number of units that result in minimum cost (140 units), but you have to evaluate C(140) to find the minimum unit cost.
Answer:
gradient 1/2, y-intercept 9
Step-by-step exp