Answer:
1.4% is the maximum acceptable annual rate of growth such that the population must stay below 24 billion during the next 100 years.
Step-by-step explanation:
We are given the following in the question:
The exponential growth model is given by:

where k is the growth rate, t is time in years and
is constant.
The world population is 5.9 billion in 2006.
Thus, t = 0 for 2006

We have to find the maximum acceptable annual rate of growth such that the population must stay below 24 billion during the next 100 years.
Putting these values in the growth model, we have,

1.4% is the maximum acceptable annual rate of growth such that the population must stay below 24 billion during the next 100 years.
Step-by-step explanation:
(-10-5)/([-5-(-1)]=
-15/-4=15/4=3.75
Answer:
The pairs are (13,15) and (-15,-13).
Step-by-step explanation:
If n is an odd integer, the very next odd integer will be n+2.
n+1 is even (so we aren't using this number)
The sum of the squares of (n) and (n+2) is 394.
This means
(n)^2+(n+2)^2=394
n^2+(n+2)(n+2)=394
n^2+n^2+4n+4=394 since (a+b)(a+b)=a^2+2ab+b^2
Combine like terms:
2n^2+4n+4=394
Subtract 394 on both sides:
2n^2+4n-390=0
Divide both sides by 2:
n^2+2n-195=0
Now we need to find two numbers that multiply to be -195 and add up to be 2.
15 and -13 since 15(-13)=-195 and 15+(-13)=2
So the factored form is
(n+15)(n-13)=0
This means we have n+15=0 and n-13=0 to solve.
n+15=0
Subtract 15 on both sides:
n=-15
n-13=0
Add 13 on both sides:
n=13
So if n=13 , then n+2=15.
If n=-15, then n+2=-13.
Let's check both results
(n,n+2)=(13,15)
13^2+15^2=169+225=394. So (13,15) looks good!
(n,n+2)=(-15,-13)
(-15)^2+(-13)^2=225+169=394. So (-15,-13) looks good!
Answer:
Thanks for the point!
Step-by-step explanation:
Have a great day
29.57 mL = 1 onzas
3 * 8.4 onzas = 25.2 onzas
29.57 mL * 25.2 onzas = 745.164 mL onzas
b) 745.1 mL Onzas