Answer:
3x²+9x+8
Step-by-step explanation:
x²+x+x(x+2)+1(x+2)+x(x+3)+2(x+3)
x²+x+x²+2x+x+2+x²+3x+2x+6
x²+x²+x²+x+2x+x+3x+2x+2+6
3x²+9x+8
Here are the numbers that represent each based on the box plot:
Median: 11 (located at the vertical line in the middle of the box)
Range: 19 - 7 = 12 (highest value - lowest value)
25%: 9 (at the left end of the box)
75%: 14 (at the right end of the box)
Interquartile range: 14 - 9 = 5 (the distance from the beginning to the end of the middle half of the data)
Answer:
Area of big rectangle - area of mini rectangle
56in2 - 3in2
B. 53 in2
1 Convert 12\frac{2}{3}12
3
2
to improper fraction. Use this rule: a \frac{b}{c}=\frac{ac+b}{c}a
c
b
=
c
ac+b
\frac{12\times 3+2}{3}\times 3\frac{1}{4}
3
12×3+2
×3
4
1
2 Simplify 12\times 312×3 to 3636
\frac{36+2}{3}\times 3\frac{1}{4}
3
36+2
×3
4
1
3 Simplify 36+236+2 to 3838
\frac{38}{3}\times 3\frac{1}{4}
3
38
×3
4
1
4 Convert 3\frac{1}{4}3
4
1
to improper fraction. Use this rule: a \frac{b}{c}=\frac{ac+b}{c}a
c
b
=
c
ac+b
\frac{38}{3}\times \frac{3\times 4+1}{4}
3
38
×
4
3×4+1
5 Simplify 3\times 43×4 to 1212
\frac{38}{3}\times \frac{12+1}{4}
3
38
×
4
12+1
6 Simplify 12+112+1 to 1313
\frac{38}{3}\times \frac{13}{4}
3
38
×
4
13
7 Use this rule: \frac{a}{b}\times \frac{c}{d}=\frac{ac}{bd}
b
a
×
d
c
=
bd
ac
\frac{38\times 13}{3\times 4}
3×4
38×13
8 Simplify 38\times 1338×13 to 494494
\frac{494}{3\times 4}
3×4
494
9 Simplify 3\times 43×4 to 1212
\frac{494}{12}
12
494
10 Simplify
\frac{247}{6}
6
247
11 Convert to mixed fraction
41\frac{1}{6}41
6
1
41 and 1/6