Nearly 81 moons will be required to equate the mass of moon to the mass of earth.
Step-by-step explanation:
Mass of earth is 5.972*10^24 kg.
Mass of the moon is 7.36*10^25 g = 7.36*10^22 kg
As mass of the Earth is given as 5.972 * 10^24 kg and mass of the moon is given as 7.36 * 10^22 kg, then the number of moons required to make it equal to the mass of earth can be calculated by taking the ratio of mass of earth to moon.
Mass of Earth = Number of moons * Mass of Moon
Number of Moons = Mass of Earth/Mass of moon
Number of moons = 5.972 * 10^24/7.36*10^22= 81 moons.
So nearly 81 moons will be required to equate the mass of moon to the mass of earth.
Answer:
0.236
Step-by-step explanation:
First put it in order
0.199, 0.211, 0.225, 0.236, 0.257, 0.264, and 0.283
Then find the middle number
0.236
Y = x + 5A linear equation (in slope-intercept form) for a line perpendicular to y = -x + 12 with a y-intercept of 5.y = 1/2x - 5Convert the equation 4x - 8y = 40 into slope-intercept form.y = -1/2x + 5A linear equation (in slope-intercept form) which is parallel to x + 2y = 12 and has a y-intercept of 5.3x - y = -5A linear equation (in standard form) which is parallel to the line containing (3, 5) and (7, 17) and has a y-intercept of 5.y = -3x + 1A linear equation (in slope-intercept form) which contains the points (10, 29) and (-2, -7).y = -5A linear equation which goes through (6, -5) and (-12, -5).x = -5A linear equation which is perpendicular to y = 12 and goes through (-5, 5).y = 5A linear equation which is parallel to y = 12 and goes through (-5, 5).y = -x + 5A linear equation (in slope-intercept form) which is perpendicular to y = x and goes through (3, 2).y = -5xA linear equation (in slope-intercept form) which goes through the origin and (1, -5).x = 2A linear equation which has undefined slope and goes through (2, 3).y = 3A linear equation which has a slope of 0 and goes through (2, 3).2x + y = -9A linear equation (in standard form) for a line with slope of -2 and goes through point (-1, -7).3x +2y = 1A linear equation (in standard form) for a line which is parallel to 3x + 2y = 10 and goes through (3, -4).y + 4 = 3/2 (x - 3)A linear equation (in point-slope form) for a line which is perpendicular to y = -2/3 x + 9 and goes through (3, -4).y - 8 = -0.2(x + 10)<span>The table represents a linear equation.
Which equation shows how (-10, 8) can be used to write the equation of this line in point-slope form?</span>