Answer:
A frameshift changes every codon past it. A base substitution only changes one codon.
Explanation:
DNA is comprised of nucleotides (A, C, T, G) that make up amino acids. Every three bases is called a codon and represents an amino acid.
In a frameshift mutation, a nucleotide is either added or deleted from the sequence. This offsets the entire sequence after it because the reading frame shifts. Here's an example:
ACTGCTATCGTCATC
If another T is added in between the first and second codons, then every codon after will be changed.
ACT>T<GCTATCGTCATC
A substitution mutation is usually less severe, as it only alters one codon in the sequence. These occur when one nucleotide is replaced by another one. Here's an example:
ACTGCTATCGTCATC
Let's say the first G is replaced by a T.
ACT>T<CTATCGTCATC
As you can see, none of the other codons changed.
Typically, a frameshift mutation is considered worse than a substitution mutation.
Answer:
Tragically, Andrew died after being struck by a boat while snorkeling on June 8, 2014. Andrew's family and friends formed the Andrew “Red” Harris Foundation to make sure he would not be forgotten and to build his legacy.
Explanation:
Hope this helps:)
Answer: Antibiotics targets the synthesis of protein, nucleic acid, folate and cell wall.
1. Synthesis of protein; antibiotics binds to either 30s or 50s ribosomal subunits blocking the polypeptide from the exiting the tunnel thus inhibiting a full completion of protein expression or production.
2. Nucleic acid synthesis; Antibiotics also act by inhibiting genetic expression, DNA transcription and replication where DNA makes exact copies of itself, as well as RNA molecules preventing bacterial growth.
3. Cell wall synthesis; Inhibition of cell wall synthesis in microorganisms will prevent it from replication and growth.
4. Folate synthesis; Folic acid also known as vitamin B9 helps in DNA replication and cell division. Folate antagonists such as aminopterin kills bacteria by preventing folic acid production required for DNA replication.