1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ycow [4]
3 years ago
9

Please Help !

Mathematics
1 answer:
Gekata [30.6K]3 years ago
4 0
The last attachment 3/4 shaded. 6/8 simplified would give the correct answer
You might be interested in
John had 2 apples, he<br> got 3 more.<br> more. How many<br> apples does he have?
S_A_V [24]

Answer:

5

Step-by-step explanation:

2+3=5

4 0
4 years ago
The fraction 9/15 is an equivalent fraction of<br><br> 6/20 <br><br>1/2 <br><br>3/5​
Mama L [17]

Answer:

3/5

Step-by-step explanation:

3/5 is equal to 9/15.

7 0
3 years ago
Read 2 more answers
Point M is located in the third quadrant of the coordinate plane, as shown.
nevsk [136]

Answer:

It is in quadrant three

Step-by-step explanation:

The points of M means there x and y will both be negatives.

5 0
3 years ago
Read 2 more answers
Please help i am giving away brainliest
emmasim [6.3K]

Answer:

6,480in.3

Step-by-step explanation:

Hope this helps!

7 0
3 years ago
Integrating sums of functions
Andrei [34K]

Answer:

(a) -12

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Calculus</u>

Integrals

Integration Rule [Reverse Power Rule]:                                                                    \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Swapping Limits]:                                                                \displaystyle \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)} \, dx

Integration Property [Multiplied Constant]:                                                           \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                         \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Splitting Integral]:                                                                \displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                      \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)  

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle \int\limits^6_4 {f(x)} \, dx = 5<u />

<u />\displaystyle \int\limits^4_{10} {f(x)} \, dx = 8<u />

<u />\displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx<u />

<u />

<u>Step 2: Solve Pt. 1</u>

  1. [Integral] Rewrite [Integration Property - Addition]:                                     \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = \int\limits^{10}_6 {4f(x)} \, dx + \int\limits^{10}_6 {10} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                   \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4\int\limits^{10}_6 {f(x)} \, dx + 10\int\limits^{10}_6 {} \, dx

<u>Step 3: Redefine</u>

<em>Manipulate the given integral values.</em>

  1. [Integrals] Combine [Integration Property - Splitting Integral]:                     \displaystyle \int\limits^6_4 {f(x)} \, dx + \int\limits^4_{10} {f(x)} \, dx = \int\limits^6_{10} {f(x)} \, dx
  2. [Integral] Rewrite:                                                                                           \displaystyle \int\limits^6_{10} {f(x)} \, dx = \int\limits^6_4 {f(x)} \, dx + \int\limits^4_{10} {f(x)} \, dx
  3. [Integral] Substitute in integrals:                                                                    \displaystyle \int\limits^6_{10} {f(x)} \, dx = 5 + 8
  4. [Integral] Add:                                                                                                 \displaystyle \int\limits^6_{10} {f(x)} \, dx = 13
  5. [Integral] Rewrite [Integration Property - Swapping Limits]:                        \displaystyle -\int\limits^{10}_6 {f(x)} \, dx = 13
  6. [Integral] [Division Property of Equality] Isolate integral:                             \displaystyle \int\limits^{10}_6 {f(x)} \, dx = -13

<u>Step 4: Solve Pt. 2</u>

  1. [Integral] Substitute in integral:                                                                     \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10\int\limits^{10}_6 {} \, dx
  2. [Integral] Integrate [Integration Rule - Reverse Power Rule]:                      \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(x) \bigg| \limits^{10}_6
  3. [Integral] Evaluate [Integration Rule - FTC 1]:                                               \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(10 - 6)
  4. [Integral] (Parenthesis) Subtract:                                                                   \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(4)
  5. [Integral] Multiply:                                                                                           \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = -52 + 40
  6. [Integral] Add:                                                                                                 \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = -12

Topic: AP Calculus AB/BC

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Other questions:
  • Can u use the distributive property to simplify 2(n - 6) if so what
    11·2 answers
  • How do you solve 12d + 2 - 3d = 5
    5·2 answers
  • a vet borrows $12,000 for 4 years. The total interest paid was $875. what was the interest rate on the loan
    5·1 answer
  • an ice cream cone has a height of 16 centimeters and a diameter 4 centimeters.What is the volume of the ice cream cone that can
    10·1 answer
  • I need help with this question
    11·1 answer
  • Pls help meh with math
    11·2 answers
  • I just want to mark someone branniest to help out
    9·2 answers
  • You make metal parts according to certain specifications. You need to convert the dimensions given in the specifica
    11·1 answer
  • X^12y^-13x^-5y^ 4 is equivalent to x^m y^n
    15·1 answer
  • XYZ has coordinates X(2, 3), Y(1,4), and Z(8,9). A translation maps X to X'(4,7). What are the coordinates for Y' and Z' for thi
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!