The ball may attracted to the magnet.
<h3>How can we understand that the hanging ball will be attracted to the magnet or not?</h3>
- From the question, we understand that the ball is attracted by the north pole of the bar magnet, then the bar magnet flipped over and the south pole is brought near the hanging ball.
- As we know, in this type of experiments of bar magnet most of the times the ball is made out of steel.
- Steel is a magnetic material.
- Magnetic materials gets attracted to the magnet at both the North and South pole.
- This can be compared to how neutral objects also gets attracted to the positively and negatively charged rods through the Polarization force.
So, If the bar magnet is flipped over and the south pole is brought near the hanging ball, The ball will be attracted to the magnet.
Learn more about the bar magnet:
brainly.com/question/27943723
#SPJ4
Answer:
62.8 μC
Explanation:
Here is the complete question
The volume electric charge density of a solid sphere is given by the following equation: ρ = (0.2 mC/m⁵)r²The variable r denotes the distance from the center of the sphere, in spherical coordinates. What is the net electric charge (in μC) of the sphere if the radius of the sphere is 0.5 m?
Solution
The total charge on the sphere Q = ∫∫∫ρdV where ρ = volume charge density = 0.2r² and dV = volume element in spherical coordinates = r²sinθdθdrdΦ
So, Q = ∫∫∫ρdV
Q = ∫∫∫ρr²sinθdθdrdΦ
Q = ∫∫∫(0.2r²)r²sinθdθdrdΦ
Q = ∫∫∫0.2r⁴sinθdθdrdΦ
We integrate from r = 0 to r = 0.5 m, θ = 0 to π and Φ = 0 to 2π
So, Q = ∫∫∫0.2r⁴sinθdθdrdΦ
Q = ∫∫∫0.2r⁴[∫sinθdθ]drdΦ
Q = ∫∫0.2r⁴[-cosθ]drdΦ
Q = ∫∫0.2r⁴-[cosπ - cos0]drdΦ
Q = ∫∫∫0.2r⁴-[-1 - 1]drdΦ
Q = ∫∫0.2r⁴-[- 2]drdΦ
Q = ∫∫0.2r⁴(2)drdΦ
Q = ∫∫0.4r⁴drdΦ
Q = ∫0.4r⁴dr∫dΦ
Q = ∫0.4r⁴dr[Φ]
Q = ∫0.4r⁴dr[2π - 0]
Q = ∫0.4r⁴dr[2π]
Q = ∫0.8πr⁴dr
Q = 0.8π∫r⁴dr
Q = 0.8π[r⁵/5]
Q = 0.8π[(0.5 m)⁵/5 - (0 m)⁵/5]
Q = 0.8π[0.125 m⁵/5 - 0 m⁵/5]
Q = 0.8π[0.025 m⁵ - 0 m⁵]
Q = 0.8π[0.025 m⁵]
Q = (0.02π mC/m⁵) m⁵
Q = 0.0628 mC
Q = 0.0628 × 10⁻³ C
Q = 62.8 × 10⁻³ × 10⁻³ C
Q = 62.8 × 10⁻⁶ C
Q = 62.8 μC
1. Resonance. Mechanical waves act on or through a medium, these waves can often have frequencies that are synchronized in a way that makes them act on the matter in the medium more "aggressively."
Answer:bowling ball has greater kinetic energy
Explanation:
Kinetic energy of bowling ball:
mass=m=5kg
Velocity=v=6m/s
Kinetic energy =ke
Ke=0.5 x m x v x v
Ke=0.5 x 5 x 6 x 6
Ke=90J
Kinetic energy of ship:
mass=m=120000kg
velocity=v=0.02m/s
Ke=0.5 x m x v x v
Ke=0.5 x 120000 x 0.02 x 0.02
Ke=24J
If resultant force on the body is 0 the acceleration will also be 0.
<h3>What is acceleration?</h3>
The term "acceleration" refers to the change in velocity with time. We must also recall that force is the product of mass and acceleration. If that is so, we can write; F = ma.
Now, we are told that the force on the body is zero so making the acceleration the subject of the formula; a = 0/mand a = 0.
Hence, if resultant force on the body is 0 the acceleration will also be 0.
Learn more about acceleration: brainly.com/question/2437624