That depends on the direction of the velocity (which the question doesn't say).
Chemical composition, the element no longer retains the same chemical formula as it did before.
Answer:
d = <23, 33, 0> m
, F_W = <0, -9.8, 0>
, W = -323.4 J
Explanation:
We can solve this exercise using projectile launch ratios, for the x-axis the displacement is
x = vox t
Y Axis
y =
t - ½ g t²
It's displacement is
d = x i ^ + y j ^ + z k ^
Substituting
d = (23 i ^ + 33 j ^ + 0) m
Using your notation
d = <23, 33, 0> m
The force of gravity is the weight of the body
W = m g
W = 1 9.8 = 9.8 N
In vector notation, in general the upward direction is positive
W = (0 i ^ - 9.8 j ^ + 0K ^) N
W = <0, -9.8, 0>
Work is defined
W = F. dy
W = F dy cos θ
In this case the force of gravity points downwards and the displacement points upwards, so the angle between the two is 180º
Cos 180 = -1
W = -F y
W = - 9.8 (33-0)
W = -323.4 J
Cations are positively charged ions. And for positive charged ions, it means the positive charges, protons, are more than the negative charges, the electrons.
Therefore Cations have fewer electrons than protons.
So the answer is: c. electrons; protons.
Answer:
Part a)

Part b)

Part c)
distance L is independent of the mass of the sphere
Explanation:
Part a)
As we know that rotational kinetic energy of the sphere is given as

so we will have

so we will have




Part b)
By mechanical energy conservation law we know that
Work done against gravity = initial kinetic energy of the sphere
So we will have



Part c)
by equation of energy conservation we know that

so here we can see that distance L is independent of the mass of the sphere