1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rewona [7]
3 years ago
7

Solve the equation. Round to the nearest hundredth. Show work.

Mathematics
1 answer:
DerKrebs [107]3 years ago
6 0

Answer:

The value of x = -0.46

Step-by-step explanation:

∵ 4e^{5x}-e^{-x}=-3e^{2x} ÷ e^{-x}

∴ \frac{4e^{5x}}{e^{-x}}-\frac{e^{-x}}{e^{-x}}=\frac{-3e^{2x}}{e^{-x}}

* Subtract the power of the same bases

∴ 4e^{6x}-1=-3e^{3x}

* Let e^{3x}=y

∴ e^{6x}=y^{2}

∴ 4y² - 1 = -3y

∴ 4y² + 3y - 1 = 0 ⇒ factorize

∴ (4y - 1)(y + 1) = 0

∴ y + 1 = 0 ⇒ y = -1

∴ 4y - 1 = 0 ⇒ 4y = 1 ⇒ y = 1/4

∵ y=e^{3x}

∴ y = -1 refused (e^{ax} never gives -ve value)

∴ e^{3x}=1/4 ⇒ insert <em>ln</em> in both sides

∵ lne^{ax}=axln(e)=ax ⇒ <em>ln</em>(e) = 1

∴ 3xln(e) = ln(1/4)

∴ 3x = ln(1/4)

∴ x = [ln(1/4)] ÷ 3 = -0.46

You might be interested in
In a race , Ram covers 5 km in 20 min. How much distance will he cover in 100 min ?
bulgar [2K]

Answer:

25 km

Step-by-step explanation:

1 km in 4m

so

100/4 = 25

25km

4 0
3 years ago
You design a tree house using a coordinate plane in which the coordinates are measured in feet. The vertices of the floor are (-
Tema [17]

Answer:

gregefdsgdsfgdfdgddg

Step-by-step explanation:

8 0
3 years ago
Plz help on number 7
yarga [219]
 because in each case, the selected column composes one<span>-tenth of the grid in total. The number of blocks is different, but the proportion of space filled is the same.</span>
3 0
3 years ago
Read 2 more answers
Prove that
Pani-rosa [81]
Let's start from what we know.

(1)\qquad\sum\limits_{k=1}^n1=\underbrace{1+1+\ldots+1}_{n}=n\cdot 1=n\\\\\\&#10;(2)\qquad\sum\limits_{k=1}^nk=1+2+3+\ldots+n=\dfrac{n(n+1)}{2}\quad\text{(arithmetic  series)}\\\\\\&#10;(3)\qquad\sum\limits_{k=1}^nk\ \textgreater \ 0\quad\implies\quad\left|\sum\limits_{k=1}^nk\right|=\sum\limits_{k=1}^nk

Note that:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=(-1)^1\cdot1^2+(-1)^2\cdot2^2+(-1)^3\cdot3^2+\dots+(-1)^n\cdot n^2=\\\\\\=-1^2+2^2-3^2+4^2-5^2+\dots\pm n^2

(sign of last term will be + when n is even and - when n is odd).
Sum is finite so we can split it into two sums, first S_n^+ with only positive trems (squares of even numbers) and second S_n^- with negative (squares of odd numbers). So:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=S_n^+-S_n^-

And now the proof.

1) n is even.

In this case, both S_n^+ and S_n^- have \dfrac{n}{2} terms. For example if n=8 then:

S_8^+=\underbrace{2^2+4^2+6^2+8^2}_{\frac{8}{2}=4}\qquad\text{(even numbers)}\\\\\\&#10;S_8^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{8}{2}=4}\qquad\text{(odd numbers)}\\\\\\

Generally, there will be:

S_n^+=\sum\limits_{k=1}^\frac{n}{2}(2k)^2\\\\\\S_n^-=\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\\\\\\

Now, calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=&#10;\left|\sum\limits_{k=1}^\frac{n}{2}(2k)^2-\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^\frac{n}{2}4k^2-\sum\limits_{k=1}^\frac{n}{2}\left(4k^2-4k+1\right)\right|=\\\\\\

=\left|4\sum\limits_{k=1}^\frac{n}{2}k^2-4\sum\limits_{k=1}^\frac{n}{2}k^2+4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|=\left|4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|\stackrel{(1),(2)}{=}\\\\\\=&#10;\left|4\dfrac{\frac{n}{2}(\frac{n}{2}+1)}{2}-\dfrac{n}{2}\right|=\left|2\cdot\dfrac{n}{2}\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\left|n\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\\\\\\&#10;

=\left|\dfrac{n^2}{2}+n-\dfrac{n}{2}\right|=\left|\dfrac{n^2}{2}+\dfrac{n}{2}\right|=\left|\dfrac{n^2+n}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\\\\\\\stackrel{(2)}{=}&#10;\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

So in this case we prove, that:

 \left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk

2) n is odd.

Here, S_n^- has more terms than S_n^+. For example if n=7 then:

S_7^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{n+1}{2}=\frac{7+1}{2}=4}\\\\\\&#10;S_7^+=\underbrace{2^2+4^4+6^2}_{\frac{n+1}{2}-1=\frac{7+1}{2}-1=3}\\\\\\

So there is \dfrac{n+1}{2} terms in S_n^-, \dfrac{n+1}{2}-1 terms in S_n^+ and:

S_n^+=\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2\\\\\\&#10;S_n^-=\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2

Now, we can calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=&#10;\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2-\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}\left(4k^2-4k+1\right)\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}4k^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\

=\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-4\left(\dfrac{n+1}{2}\right)^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\=&#10;\left|-4\left(\dfrac{n+1}{2}\right)^2+4\sum\limits_{k=1}^{\frac{n+1}{2}}k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|\stackrel{(1),(2)}{=}\\\\\\&#10;\stackrel{(1),(2)}{=}\left|-4\dfrac{n^2+2n+1}{4}+4\dfrac{\frac{n+1}{2}\left(\frac{n+1}{2}+1\right)}{2}-\dfrac{n+1}{2}\right|=\\\\\\

=\left|-n^2-2n-1+2\cdot\dfrac{n+1}{2}\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-2n-1+(n+1)\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-2n-1+\dfrac{(n+1)^2}{2}+n+1-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-n+\dfrac{n^2+2n+1}{2}-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-n+\dfrac{n^2}{2}+n+\dfrac{1}{2}-\dfrac{n}{2}-\dfrac{1}{2}\right|=\left|-\dfrac{n^2}{2}-\dfrac{n}{2}\right|=\left|-\dfrac{n^2+n}{2}\right|=\\\\\\

=\left|-\dfrac{n(n+1)}{2}\right|=|-1|\cdot\left|\dfrac{n(n+1)}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

We consider all possible n so we prove that:

\forall_{n\in\mathbb{N}}\quad\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk
7 0
3 years ago
Pls help need asap in 10 mins stressing out ://
eimsori [14]

Answer:  The correct option is

(D) {3, 10, 17, 24, …}.

Reasoning:

 We are given to select the sequence that represents the following function with a domain of natural numbers :

The set of natural numbers is {1, 2, 3, 4, . . .}

to find the sequence, we need to substitute x = 1, 2, 3, 4, . . . in equation (i).

From equation (i), we get

Therefore, the sequence that represents the given function is {3, 10, 17, 24, …}.

Thus, option (D) is CORRECT.

4 0
2 years ago
Other questions:
  • Rewrite 1 3/8 As a fraction greater than one
    12·2 answers
  • Write a word problem with dollars and cents that can be solved using subtraction. Include the solution.
    6·2 answers
  • a supplier sells 2 1/4 pounds of mulch for every 1 1/3 pounds of gravel. The supplier sells 172 pounds of mulch and gravel combi
    13·1 answer
  • HELPPP a GIRL OUT PLEASEEEE!
    9·1 answer
  • A straight line has equation 3y-3x=4. Write down the equation of another straight line parallel to it
    10·1 answer
  • Inequalities part 2<br> I need help pls i dont understand
    7·1 answer
  • PLEASE HELP QUICKLY
    7·2 answers
  • A delivery truck traveled 324 miles on 18 gallons of gas. How far can be traveled on 41 gallons of gas?
    5·1 answer
  • Sharon work 45 ½ hours. Her hourly wage is $18/hr. What is her gross pay
    15·1 answer
  • Plz answer this question find value of x in the give figure ​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!