Answer:
F1 = 80
Explanation:
f1= f2 √ (F1/F2)
Where f1 = 300, f2 = 260 and F2 = 60
Putting in the above formula
300 = 260√(F1/60)
Dividing both sides by 260
=> 1.15 = √(F1/60)
Squaring both sides
=> 1.33 = F1/60
Multiplying both sides by 60
=> F1 = 80
Answer:

Explanation:
Since work done is in the form of potential energy, we will use the formula of potential energy here.
We know that,
<h3>P.E. = mgh </h3>
Where,
m = mass = 20 kg
g = acceleration due to gravity = 10 m/s²
h = vertical height = 20 m
So,
<h3>Work done = mgh</h3>
Work done = (20)(10)(20)
Work done = 4000 joules
Work done = 4 kJ
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Answer:
We conclude that the required momentum is 80 kgm/s.
Explanation:
Given
To determine
The momentum p = ?
Important Tip:
- The momentum of an object is the product of mass and velocity.
We can determine the momentum using the formula

where
now substituting m = 20 and v = 4 using the equation


kg m/s
Therefore, we conclude that the required momentum is 80 kgm/s.
Explanation:
The distance that a car travels down the interstate can be calculated with the following formula:
Distance = Speed x Time
(A) Speed of the car, v = 70 miles per hour = 31.29 m/s
Time, d = 6 hours = 21600 s
Distance = Speed x Time
D = 31.29 m/s × 21600 s
D = 675864 meters
or

(b) Time, d = 10 hours = 36000 s
Distance = Speed x Time
D = 31.29 m/s × 36000 s
D = 1126440 meters
or

(c) Time, d = 15 hours = 54000 s
Distance = Speed x Time
D = 31.29 m/s × 54000 s
D = 1689660 meters
or

Hence, this is the required solution.
The input force will increase too because the more the ramp is increasing the more force is being put on the object going down the ramp... hope this helps ^-^