Answer:
2nd statement would be the right answer
The brightness of the lamp is proportional to the current flowing through the lamp: the larger the current, the brighter the lamp.
The current flowing through the lamp is given by Ohm's law:

where
V is the potential difference across the lamp, which is equal to the emf of the battery, and R is the resistance of the lamp.
The problem says that the battery is replaced with one with lower emf. Looking at the formula, this means that V decreases: if we want to keep the same brightness, we need to keep I constant, therefore we need to decrease R, the resistance of the lamp.
<span>When you are setting up your budget, it is easier to start by setting your budgeting amounts based on the average of your last three months of spending. Many budgeting programs can import past transactions and help you come up with the estimates that you need for your budget. Then you can begin to make adjustments after you have those initial amounts.
</span>
The two main goals are to spend less than you earn and to know where your money is going. Once you have a working budget you can work towards your other goals of saving money and getting out of debt. It is important to avoid theses common budgeting mistakes <span>when setting up your budget.
</span>
Answer:
x = 0.974 L
Explanation:
given,
length of inclination of log = 30°
mass of log = 200 Kg
rock is located at = 0.6 L
L is the length of the log
mass of engineer = 53.5 Kg
let x be the distance from left at which log is horizontal.
For log to be horizontal system should be in equilibrium
∑ M = 0
mass of the log will be concentrated at the center
distance of rock from CM of log = 0.1 L
now,
∑ M = 0



x = 0.974 L
hence, distance of the engineer from the left side is equal to x = 0.974 L
There's a very subtle thing going on here, one that could blow your mind.
Wherever we look in the universe, no matter what direction we look,
we see the light from distant galaxies arriving at our telescopes with
longer wavelengths than the light SHOULD have.
The only way we know of right now that can cause light waves to get
longer after they leave the source is motion of the source away from
the observer. The lengthening of the waves on account of that motion
is called the Doppler effect. (The answer to the question is choice-c.)
But that may not be the only way that light waves can get stretched. It's
the only way we know of so far, and so we say that the distant galaxies
are all moving away from us.
From that, we say the whole universe is expanding, and that right there is
one of the strongest observations that we explain with the Big Bang theory
of creation.
Now: If ... say tomorrow ... a competent Physicist discovers another way
for light waves to get stretched after they leave the source, then the whole
"expanding universe" idea is out the window, and probably the Big Bang
theory along with it !
Now that our mind has been blown, come back down to Earth with me,
and I'll give you something else to think about:
It's true that when we look at distant galaxies, we do see their light
arriving in our telescopes with longer wavelengths than it should have.
And then we use the Doppler effect to calculate how fast that galaxy
is moving away from us. That's all true. Astronomers are doing it
every day. I mean every night.
So here's the question for you to think about ... maybe even READ about:
When the light from a distant galaxy pours into our telescope, and we
look at it, and we measure its wavelength, and we find that the wavelength
is longer than it should be ... how do we know what it should be ? ? ?