Answer:
Evaporation is when the sun's sun rays hit on water and water vapor forms
<span>The independent variable is the one that researchers directly change. Here, the students will deliberately change the temperature, so the independent variable will be temperature in degrees. The dependent variable is the one that researchers measure as the outcome of the experiment. Here, the students will measure the time it takes until the water is gone (evaporated), so the dependent variable will be time, in units of seconds or minutes or hours.</span>
The question is incomplete, here is the complete question:
The rate of certain reaction is given by the following rate law:
![rate=k[H_2]^2[I_2]^2](https://tex.z-dn.net/?f=rate%3Dk%5BH_2%5D%5E2%5BI_2%5D%5E2)
At a certain concentration of
and
, the initial rate of reaction is 4.0 × 10⁴ M/s. What would the initial rate of the reaction be if the concentration of
Answer : The initial rate of the reaction will be,
Explanation :
Rate law expression for the reaction:
![rate=k[H_2]^2[I_2]^2](https://tex.z-dn.net/?f=rate%3Dk%5BH_2%5D%5E2%5BI_2%5D%5E2)
As we are given that:
Initial rate = 4.0 × 10⁴ M/s
Expression for rate law for first observation:
....(1)
Expression for rate law for second observation:
....(2)
Dividing 2 by 1, we get:
![\frac{R}{4.0\times 10^4}=\frac{k(\frac{[H_2]}{2})^2[I_2]^2}{k[H_2]^2[I_2]^2}](https://tex.z-dn.net/?f=%5Cfrac%7BR%7D%7B4.0%5Ctimes%2010%5E4%7D%3D%5Cfrac%7Bk%28%5Cfrac%7B%5BH_2%5D%7D%7B2%7D%29%5E2%5BI_2%5D%5E2%7D%7Bk%5BH_2%5D%5E2%5BI_2%5D%5E2%7D)


Therefore, the initial rate of the reaction will be, 
Answer:
neutrons are inside the nucleus
Explanation:
The most significant contribution that added to Rutherford's discovery of a positive nucleus is that neutrons are also inside the nucleus.
- The discovery of neutrons as a nuclear particle was instrumental to Rutherford's discovery.
- Since during his experiment, the alpha particles were deflected partly, he suggested a massive nucleus made up of just protons.
- With the discovery of the neutron, the mass of the nucleus was enough to cause the deflection.
If you follow the octet rule, you know that an element must have 8 outside (or valence) electrons to be energetically favorable.
In CCl4, the carbon molecule forms four bonds; one for each chlorine atom. Each bond contains 2 electrons, so it is satisfied.
In PCl3, Phosphorous forms only 3 bonds with chlorine, which means in order to have 8 valence electrons, it also has a lone pair of electrons, not bonded with chlorine.
Now, in CCl4, picture the shape of the molecule like a plus sign, with the carbon in the middle and the chlorine at the four ends. It is symmetrical, and therefore is nonpolar.
In PCl3, the lone pair electrons <em>push</em>, so to speak, the 3 chlorine atoms away, making a T-shaped molecule. Since the chlorine is more electronegative than carbon, the molecule is unbalenced, making it polar.